The evolution of the spectral energy distribution during flares constrains models of particle acceleration in blazar jets. The archetypical blazar BL Lac provided a unique opportunity to study spectral variations during an extended strong flaring episode from 2020-2021. During its brightest 𝛾-ray state, the observed flux (0.1-300 GeV) reached up to 2.15 × 10 −5 ph cm −2 s −1 , with sub-hour scale variability. The synchrotron hump extended into the X-ray regime showing a minute-scale flare with an associated peak shift of inverse-Compton hump in gamma-rays. In shock acceleration models, a high Doppler factor value >100 is required to explain the observed rapid variability, change of state, and 𝛾-ray peak shift. Assuming particle acceleration in mini-jets produced by magnetic reconnection during flares, on the other hand, alleviates the constraint on required bulk Doppler factor. In such jet-in-jet models, observed spectral shift to higher energies (towards TeV regime) and simultaneous rapid variability arises from the accidental alignment of a magnetic plasmoid with the direction of the line of sight. We infer a magnetic field of ∼ 0.6 G in a reconnection region located at the edge of BLR (∼ 0.02 pc). The scenario is further supported by log-normal flux distribution arising from merging of plasmoids in reconnection region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.