The structural, elastic and electronic properties of chalcopyrite compound CuInSe2 and CuGaSe2 have been investigated using the full-potential linearized muffin-tin orbital method (FP-LMTO) within the frame of density functional theory (DFT). In this approach, the local density approximation is used for the exchange-correlation potential using Perdew–Wang parametrization. The equilibrium lattice parameters, bulk modulus, transition pressure, elastic constants and their related parameters such as Poisson's ratio, Young modulus, shear modulus and Debye temperature were calculated and compared with available experimental and theoretical data. They are in reasonable agreement. In this paper the electronic properties are treated with GGA + U approach, which brings out the important role played by the d-state of noble metal (Cu) and give the correct nature of the energy band gap. Our obtained results show that both compounds exhibit semi-conductor behaviour with direct band gap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.