The COVID-19 pandemic has pushed health systems to their limit and forced readjustment of standards of care for different pathologies. Management of neuromuscular diseases becomes a challenge since most of them are chronic, disabling, progressive, and/or require immunosuppressive drugs. There are three main aspects of COVID-19 that affect neuromuscular diseases care. The first one relates to how SARS-CoV2 directly affects different neuromuscular pathologies. Respiratory weakness, as seen in myasthenia gravis, amyotrophic lateral sclerosis, and myopathies, and the use of immunomodulatory drugs (Myasthenia Gravis and Chronic Inflammatory Demyelinating Polyneuropathy) make this group of patients potentially more vulnerable. Secondly, safety measures also affect proper care, limiting care continuity, and physical rehabilitation (one of the essential aspects of myopathies treatment). Telemedicine can partially solve the problem allowing for a continuum of close care, avoiding unnecessary visits, and even guaranteeing the attention of professionals from tertiary care centers. However, one of the crucial steps in neuromuscular diseases is diagnosis, and in most scenarios, more than one face-to-face visit is needed. Lastly, the global COVID-19 situation will also have an economic impact on patients and their families. This situation is of particular concern given that neuromuscular diseases already present difficulties due to the scarcity of resources in terms of public healthcare and research.
The ongoing pandemic Coronavirus Disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a matter of global concern in terms of public health Within the symptoms secondary to SARS-CoV-2 infection, hyposmia and anosmia have emerged as characteristic symptoms during the onset of the pandemic. Although many researchers have investigated the etiopathogenesis of this phenomenon, the main cause is not clear. The appearance of the new variant of concern Omicron has meant a breakthrough in the chronology of this pandemic, presenting greater transmissibility and less severity, according to the first reports. We have been impressed by the decrease in anosmia reported with this new variant and in patients reinfected or who had received vaccination before becoming infected. Based on the literature published to date, this review proposes different hypotheses to explain this possible lesser affectation of smell. On the one hand, modifications in the SARS-CoV-2 spike protein could produce changes in cell tropism and interaction with proteins that promote virus uptake (ACE-2, TMPRSS2, and TMEM16F). These proteins can be found in the sustentacular cells and glandular cells of the olfactory epithelium. Second, due to the characteristics of the virus or previous immunity (infection or vaccination), there could be less systemic or local inflammation that would generate less cell damage in the olfactory epithelium and/or in the central nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.