Reduced amplitude and distorted dispersion of seismic waves caused by attenuation, especially strong attenuation, always degrades the resolution of migrated images. To improve image resolution, we evaluated a methodology of compensating for attenuation (∼1∕Q) effects in reverse-time migration (Q-RTM). The Q-RTM approach worked by mitigating the amplitude attenuation and phase dispersion effects in source and receiver wavefields. Source and receiver wavefields were extrapolated using a previously published time-domain viscoacoustic wave equation that offered separated amplitude attenuation and phase dispersion operators. In our Q-RTM implementation, therefore, attenuation-and dispersion-compensated operators were constructed by reversing the sign of attenuation operator and leaving the sign of dispersion operator unchanged, respectively. Further, we designed a low-pass filter for attenuation and dispersion operators to stabilize the compensating procedure. Finally, we tested the Q-RTM approach on a simple layer model and the more realistic BP gas chimney model. Numerical results demonstrated that the Q-RTM approach produced higher resolution images with improved amplitude and phase compared to the noncompensated RTM, particularly beneath high-attenuation zones.
Accurate ground-motion prediction requires detailed site effect assessment, but in urban areas where such assessments are most important, geotechnical surveys are difficult to perform, limiting their availability. Distributed acoustic sensing (DAS) offers an appealing alternative by repurposing existing fiber-optic cables, normally employed for telecommunication, as an array of seismic sensors. We present a proof-of-concept demonstration by using DAS to produce high-resolution maps of the shallow subsurface with the Stanford DAS array, California. We describe new methods to assess H/V spectral ratio -- a technique widely used to estimate the natural frequency of the soil -- and to extract Rayleigh-wave dispersion curves from ambient seismic field. These measurements are jointly inverted to provide models of shallow seismic velocities and sediment thicknesses above bedrock in central campus. The good agreement with an independent survey validates the methodology and demonstrates the power of DAS for microzonation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.