The optically pumped cesium beam clock named Cs IV is operated with a new short Ramsey cavity satisfying strict requirements on the microwave leakage level. The most relevant characteristics of the device are presented. Cs IV is presently driven by standard electronics coming from a HP 5061 B clock that provides a sinusoidal modulation of the interrogation microwave signal and a microwave power stability of about 1% at a temperature of 20+/-1 degrees C. The short- and medium-term frequency stability measurement gives sigma(y)(1 day)=2x10(-14): this value holds up to 3 days. The accuracy evaluation results in an uncertainty of 10(-12), and the repeatability is evaluated to 3x10(-13). It appears that the flicker floor is beginning at 2x10(-14) and is mainly due to both the power fluctuations of the free running microwave interrogating signal and the fluctuations of the external static magnetic field. The accuracy is limited by the lack of knowledge of the end-to-end cavity phase shift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.