[1] High-elevation forests represent a large fraction of potential carbon uptake in North America, but this uptake is not well constrained by observations. Additionally, forests in the Rocky Mountains have recently been severely damaged by drought, fire, and insect outbreaks, which have been quantified at local scales but not assessed in terms of carbon uptake at regional scales. The Airborne Carbon in the Mountains Experiment was carried out in 2007 partly to assess carbon uptake in western U.S. mountain ecosystems. The magnitude and seasonal change of carbon uptake were quantified by (1) paired upwind-downwind airborne CO 2 observations applied in a boundary layer budget, (2) a spatially explicit ecosystem model constrained using remote sensing and flux tower observations, and (3) a downscaled global tracer transport inversion. Top-down approaches had mean carbon uptake equivalent to flux tower observations at a subalpine forest, while the ecosystem model showed less. The techniques disagreed on temporal evolution. Regional carbon uptake was greatest in the early summer immediately following snowmelt and tended to lessen as the region experienced dry summer conditions. This reduction was more pronounced in the airborne budget and inversion than in flux tower or upscaling, possibly related to lower snow water availability in forests sampled by the aircraft, which were lower in elevation than the tower site. Changes in vegetative greenness associated with insect outbreaks were detected using satellite reflectance observations, but impacts on regional carbon cycling were unclear, highlighting the need to better quantify this emerging disturbance effect on montane forest carbon cycling.
Abstract. There is a widely recognized need to improve our understanding of biosphere-atmosphere carbon exchanges in areas of complex terrain including the United States Mountain West. CO2 fluxes over mountainous terrain are often difficult to measure due to unusual and complicated influences associated with atmospheric transport. Consequently, deriving regional fluxes in mountain regions with carbon cycle inversion of atmospheric CO2 mole fraction is sensitive to filtering of observations to those that can be represented at the transport model resolution. Using five years of CO2 mole fraction observations from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON), five statistical filters are used to investigate a range of approaches for identifying regionally representative CO2 mole fractions. Test results from three filters indicate that subsets based on short-term variance and local CO2 gradients across tower inlet heights retain nine-tenths of the total observations and are able to define representative diel variability and seasonal cycles even for difficult-to-model sites where the influence of local fluxes is much larger than regional mole fraction variations. Test results from two other filters that consider measurements from previous and following days using spline fitting or sliding windows are overly selective. Case study examples showed that these windowing-filters rejected measurements representing synoptic changes in CO2, which suggests that they are not well suited to filtering continental CO2 measurements. We present a novel CO2 lapse rate filter that uses CO2 differences between levels in the model atmosphere to select subsets of site measurements that are representative on model scales. Our new filtering techniques provide guidance for novel approaches to assimilating mountain-top CO2 mole fractions in carbon cycle inverse models.
We describe a polar coordinate transformation of vegetation index profiles which permits a broad-scale comparison of location-specific phenological variability influenced by climate, topography, land use, and other factors. We apply statistical data reduction techniques to identify fundamental dimensions of phenological variability and to classify phenological types with intuitive ecological interpretation. Remote sensing-based land surface phenology can reveal ecologically meaningful vegetational diversity and dynamics across broad landscapes. Land surface phenology is inherently complex at regional to continental scales, varying with latitude, elevation, and multiple biophysical factors. Quantifying phenological change across ecological gradients at these scales is a potentially powerful way to monitor ecological development, disturbance, and diversity. Polar coordinate transformation was applied to Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) time series spanning 2000-2018 across North America. In a first step, 46 NDVI values per year were reduced to 11 intuitive annual metrics, such as the midpoint of the growing season and degree of seasonality, measured relative to location-specific annual phenological cycles. Second, factor analysis further reduced these metrics to fundamental phenology dimensions corresponding to annual timing, productivity, and seasonality. The factor analysis explained over 95% of the variability in the metrics and represented a more than ten-fold reduction in data volume from the original time series. In a final step, phenological classes (‘phenoclasses’) based on the statistical clustering of the factor data, were computed to describe the phenological state of each pixel during each year, which facilitated the tracking of year-to-year dynamics. Collectively the phenology metrics, factors, and phenoclasses provide a system for characterizing land surface phenology and for monitoring phenological change that is indicative of ecological gradients, development, disturbance, and other aspects of landscape-scale diversity and dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.