Small planets (∼1–3.9 ) constitute more than half of the inventory of the 4000-plus exoplanets discovered so far. Smaller planets are sufficiently dense to be rocky, but those with radii larger than ∼1.6 are thought to display in many cases hydrogen/helium gaseous envelopes up to ∼30% of the planetary mass. These low-mass planets are highly irradiated and the question of their origin, evolution, and possible links remains open. Here we show that close-in ocean planets affected by the greenhouse effect display hydrospheres in supercritical state, which generate inflated atmospheres without invoking the presence of large hydrogen/helium gaseous envelopes. We present a new set of mass–radius relationships for ocean planets with different compositions and different equilibrium temperatures, which are found to be well adapted to low-density sub-Neptune planets. Our model suggests that super-Earths and water-rich sub-Neptunes could belong to the same family of planets, i.e., hydrogen/helium-free planets, with differences between their interiors simply resulting from the variation in the water content.
Modeling the interior of exoplanets is essential to go further than the conclusions provided by mean density measurements. In addition to the still limited precision on the planets' fundamental parameters, models are limited by the existence of degeneracies on their compositions. Here, we present a model of internal structure dedicated to the study of solid planets up to ∼10 Earth masses, i.e., super-Earths. When the measurement is available, the assumption that the bulk Fe/Si ratio of a planet is similar to that of its host star allows us to significantly reduce the existing degeneracy and more precisely constrain the planet's composition. Based on our model, we provide an update of the mass-radius relationships used to provide a first estimate of a planet's composition from density measurements. Our model is also applied to the cases of two well-known exoplanets, CoRoT-7b and Kepler-10b, using their recently updated parameters. The core mass fractions of CoRoT-7b and Kepler-10b are found to lie within the 10%-37% and 10%-33% ranges, respectively, allowing both planets to be compatible with an Earthlike composition. We also extend the recent study of Proxima Centauri b and show that its radius may reach 1.94 Å R in the case of a 5 Å M planet, as there is a 96.7% probability that the real mass of Proxima Centauri b is below this value.
Molecular oxygen has been detected in the coma of comet 67P/Churyumov-Gerasimenko with abundances in the 1%-10% range by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis-Double Focusing Mass Spectrometer instrument on board the Rosetta spacecraft. Here we find that the radiolysis of icy grains in lowdensity environments such as the presolar cloud may induce the production of large amounts of molecular oxygen. We also show that molecular oxygen can be efficiently trapped in clathrates formed in the protosolar nebula (PSN), and that its incorporation as crystalline ice is highly implausible, because this would imply much larger abundances of Ar and N 2 than those observed in the coma. Assuming that radiolysis has been the only O 2 production mechanism at work, we conclude that the formation of comet 67P/Churyumov-Gerasimenko is possible in a dense and early PSN in the framework of two extreme scenarios: (1) agglomeration from pristine amorphous icy grains/ particles formed in ISM and (2) agglomeration from clathrates that formed during the disk's cooling. The former scenario is found consistent with the strong correlation between O 2 and H 2 O observed in comet 67P/ChuryumovGerasimenko's coma while the latter scenario requires that clathrates formed from ISM icy grains that crystallized when entering the PSN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.