A food selection and electivity study was carried out on Thai barb Puntius gonionotus of 7 to 10 cm standard length. The fish were fed a range of food items, including phytoplankton, zooplankton, higher plant material and detritus. The samples were found to change their food habit over time. Although there was a marked shift in planktivory from zooplankton, it was clear that plankton size had no effect on choice. Food analysis by points method indicated that, overall, the food habit of the fish shifted from plankton towards detritus and macrophytes over time. Coincidentally, gut length: body length ratio increased while total gut length and gill raker length decreased, paralleling the observed changes in feeding habits.
Background Entomopathogenic fungi are the most versatile having a wide host range, capable of infecting insects at different developmental stages. In the present study, Metarhizium rileyi, at the concentrations of 102, 103, 104, 105, 106, 107 and 108 conidia/ml and sub-lethal concentrations of azadirachtin (1.02 and 1.53 ppm) and indoxacarb (0.72 ppm) were evaluated against the 1st, 2nd, 3rd, 4th and 5th larval instars of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) under laboratory conditions. Results M. rileyi applied at 106 conidia/ml caused a maximum mortality of 83.33 and 80.00% of 1st and 2nd larval instars of H. armigera, respectively. The maximum mortality of 3rd, 4th and 5th larval instars of H. armigera with 108 conidia/ml of M. rileyi was 83.33, 76.67 and 53.33%, respectively. When M. rileyi blended with azadirachtin at 1.02 ppm, the highest mortality rate of 86.21% at 106 conidia/ml against 2nd instar larvae was resulted. Similarly, M. rileyi applied at 108 conidia /ml mixed with azadirachtin (1.53 ppm) showed 89.66% mortality of 3rd instar larvae. The 2nd instar larvae treated with M. rileyi at 106 conidia/ml, mixed with indoxacarb (0.72 ppm), the corrected mortality rate was 82.14%. Concentration mortality response of 3rd instar larvae to M. rileyi blended with indoxacarb (0.72 ppm) was 85.71% at 108 conidia/ml. The median lethal concentration (LC50) values were 5.51 × 103, 1.86 × 104, 2.81 × 105 and 5.55 × 105 conidia/ml for 1st, 2nd, 3rd and 4th larval instars, respectively, after 7 days of treatment. M. rileyi when mixed with sub-lethal concentrations of azadirachtin (1.02 ppm) and indoxacarb (0.72 ppm) resulted LC50 values of 1.09 × 104 conidia/ml and 1.37 × 104 conidia/ml against 2nd instar larvae, respectively, after 24 hours. Similarly, M. rileyi mixed with sub-lethal concentrations of azadirachtin (1.53 ppm) and indoxacarb (0.72 ppm) resulted LC50 values of 3.12 × 108 and 3.06 × 105 conidia/ml against 3rd instar larvae, respectively, after 24 hours. The study revealed that the susceptibility of larvae decreased in case of large larval instars. Conclusions M. rileyi can be utilized as one of the component of Integrated Pest Management Program for the eco-friendly management of H. armigera. As the application of M. rileyi @ 107 conidia/ml alone or in combination with azadirachtin (1.02 and 1.53 ppm) or indoxacarb (0.72 ppm) resulted to the highest mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.