A multifrequency (ten spectral lines between VHF and S band) coherent radio beacon is presently transmitting continuously from a 1000‐km, high‐inclination orbit for the purpose of characterizing the transionospheric communication channel. Its high phase‐reference frequency (2891 MHz) permits direct observation of complex‐signal scintillation, and its very stable, sun‐synchronous orbit allows repeated pre‐midnight observations at low latitudes and near‐midnight observations at auroral latitudes. We present here early results of the observations; salient points include the following. First, most of the data are consistent with phase‐screen modeling of the production of ionospheric scintillation, including an ƒ−2 frequency dependence for phase variance. Second, propagation theories invoking weak, single scatter seldom are adequate, because even moderate intensity scintillation usually is accompanied by phase fluctuations comparable to or greater than a radian. Third, under conditions producing GHz scintillation (near the geomagnetic equator), lower frequencies show marked diffraction effects, including breakdown of the simple ƒ−2 behavior of phase variance and loss of signal coherenceacross a band as narrow as 11.5 MHz at UHF.
Laboratory measurements on the electrical properties of solid carbon dioxide (dry ice) were made over the frequency range 2.2 to 12 GHz. These give a dielectric constant which varies with density according to the Rayleigh mixing formula and is independent of frequency; at 1 g/cm 3 the dielectric constant is 1.7.The loss tangent was below the sensitivity threshold of our measurement technique at all frequencies and densities used; we set an upper limit of 0.005.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.