We present the COSMOS2015 a catalog which contains precise photometric redshifts and stellar masses for more than half a million objects over the 2deg 2 COSMOS field. Including new Y JHK s images from the UltraVISTA-DR2 survey, Y -band from Subaru/Hyper-Suprime-Cam and infrared data from the Spitzer Large Area Survey with the Hyper-Suprime-Cam Spitzer legacy program, this near-infraredselected catalog is highly optimized for the study of galaxy evolution and environments in the early Universe. To maximise catalog completeness for bluer objects and at higher redshifts, objects have been detected on a χ 2 sum of the Y JHK s and z ++ images. The catalog contains ∼ 6 × 10 5 objects in the 1.5 deg 2 UltraVISTA-DR2 region, and ∼ 1.5 × 10 5 objects are detected in the "ultra-deep stripes" (0.62 deg 2 ) at K s ≤ 24.7 (3σ, 3 , AB magnitude). Through a comparison with the zCOSMOSbright spectroscopic redshifts, we measure a photometric redshift precision of σ ∆z/(1+zs) = 0.007 and a catastrophic failure fraction of η = 0.5%. At 3 < z < 6, using the unique database of spectroscopic redshifts in COSMOS, we find σ ∆z/(1+zs) = 0.021 and η = 13.2%. The deepest regions reach a 90% completeness limit of 10 10 M to z = 4. Detailed comparisons of the color distributions, number counts, and clustering show excellent agreement with the literature in the same mass ranges. COSMOS2015 represents a unique, publicly available, valuable resource with which to investigate the evolution of galaxies within their environment back to the earliest stages of the history of the Universe. The COSMOS2015 catalog is distributed via anonymous ftp b and through the usual astronomical archive systems (CDS, ESO, IRSA).
We measure the stellar mass function (SMF) and stellar mass density of galaxies in the COSMOS field up to z ∼ 6. We select them in the near-IR bands of the COSMOS2015 catalogue, which includes ultra-deep photometry from UltraVISTA-DR2, SPLASH, and Subaru/Hyper SuprimeCam. At z > 2.5 we use new precise photometric redshifts with error σ z = 0.03(1 + z) and an outlier fraction of 12%, estimated by means of the unique spectroscopic sample of COSMOS (∼100 000 spectroscopic measurements in total, more than one thousand having robust z spec > 2.5). The increased exposure time in the DR2, along with our panchromatic detection strategy, allow us to improve the completeness at high z with respect to previous UltraVISTA catalogues (e.g. our sample is >75% complete at 10 10 M and z = 5). We also identify passive galaxies through a robust colour-colour selection, extending their SMF estimate up to z = 4. Our work provides a comprehensive view of galaxy-stellar-mass assembly between z = 0.1 and 6, for the first time using consistent estimates across the entire redshift range. We fit these measurements with a Schechter function, correcting for Eddington bias. We compare the SMF fit with the halo mass function predicted from ΛCDM simulations, finding that at z > 3 both functions decline with a similar slope in the high-mass end. This feature could be explained assuming that mechanisms quenching star formation in massive haloes become less effective at high redshifts; however further work needs to be done to confirm this scenario. Concerning the SMF low-mass end, it shows a progressive steepening as it moves towards higher redshifts, with α decreasing from −1.47 +0.02 −0.02 at z 0.1 to −2.11 +0.30 −0.13 at z 5. This slope depends on the characterisation of the observational uncertainties, which is crucial to properly remove the Eddington bias. We show that there is currently no consensus on the method to quantify such errors: different error models result in different best-fit Schechter parameters.
We measure cosmic weak lensing shear power spectra with the Subaru Hyper Suprime-Cam (HSC) survey first-year shear catalog covering 137 deg2 of the sky. Thanks to the high effective galaxy number density of ∼17 arcmin−2, even after conservative cuts such as a magnitude cut of i < 24.5 and photometric redshift cut of 0.3 ≤ z ≤ 1.5, we obtain a high-significance measurement of the cosmic shear power spectra in four tomographic redshift bins, achieving a total signal-to-noise ratio of 16 in the multipole range 300 ≤ ℓ ≤ 1900. We carefully account for various uncertainties in our analysis including the intrinsic alignment of galaxies, scatters and biases in photometric redshifts, residual uncertainties in the shear measurement, and modeling of the matter power spectrum. The accuracy of our power spectrum measurement method as well as our analytic model of the covariance matrix are tested against realistic mock shear catalogs. For a flat Λ cold dark matter model, we find $S\,_{8}\equiv \sigma _8(\Omega _{\rm m}/0.3)^\alpha =0.800^{+0.029}_{-0.028}$ for α = 0.45 ($S\,_8=0.780^{+0.030}_{-0.033}$ for α = 0.5) from our HSC tomographic cosmic shear analysis alone. In comparison with Planck cosmic microwave background constraints, our results prefer slightly lower values of S8, although metrics such as the Bayesian evidence ratio test do not show significant evidence for discordance between these results. We study the effect of possible additional systematic errors that are unaccounted for in our fiducial cosmic shear analysis, and find that they can shift the best-fit values of S8 by up to ∼0.6 σ in both directions. The full HSC survey data will contain several times more area, and will lead to significantly improved cosmological constraints.
We have measured the weak-lensing signal as a function of rest-frame B-, V-, and R-band luminosity for a sample of ''isolated'' galaxies. These results are based on four-band photometry from the Red-Sequence Cluster Survey, enabling us to determine photometric redshifts for a large number of galaxies. We select a secure sample of lenses with photometric redshifts 0:2 < z < 0:4 and study the relation between the virial mass and baryonic contents. In addition, we discuss the implications of the derived photometric redshift distribution for published cosmic shear studies. The virial masses are derived from a fit to the observed lensing signal. For a galaxy with a fiducial luminosity of 10 10 h À2 L B, , we obtain a mass M vir ¼ 9:9 þ1:5 À1:3 ; 10 11 M . The virial mass as a function of luminosity is consistent with a power law /L 1.5 , with similar slopes for the three filters considered here. These findings are in excellent agreement with results from the Sloan Digital Sky Survey and semianalytic models of galaxy formation. We measure the fraction of mass in stars and the baryon fraction in galaxies by comparing the virial mass-to-light ratio to predicted stellar mass-to-light ratios. We find that star formation is inefficient in converting baryons into stars, with late-type galaxies converting $33% and early-type galaxies converting only $14% of baryons into stars. Our results imply that the progenitors of early-type galaxies must have low stellar mass fractions, suggestive of a high formation redshift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.