We have compared the levels of inositol metabolites in three pairs of normal and transformed cells which have been matched with respect to their cell lineage, differentiation and proliferation status: (i) normal human myeloid blast cells and the human promyelocytic leukaemic cell line, HL60; (ii) human umbilical-cord T-helper cells and C8166 cells, a HTLV-1-transformed T-helper cell line; and (iii) an interleukin 3-dependent long-term culture of murine pro-B-cells (BAF3) and BAF3 cells transformed by transfection with the bcr-abl oncogene. Complex patterns of inositol metabolites were present in each of the cell populations. Although there were a number of differences in the levels of certain inositol metabolites between individual cell populations in the paired groups, we did not observe any consistent difference in the levels of inositol metabolites between the proliferating normal and transformed cells. In particular, our data do not support the reported correlation between elevated glycerophosphoinositol (GroPIns) levels and transformation of cells by membrane and cytoplasmic oncogenes which has been reported by other workers. All the cells contained high concentrations of Ins(1,3,4,5,6)P5 (between 12 and 55 microM) and InsP6 (between 37 and 105 microM). The HTLV1-transformed T-helper cells had particularly high levels of total inositol phosphates (predominantly GroPIns, an unidentified inositol bisphosphate and InsP6). The observations are discussed with reference to cell transformation and to the differentiation status of the paired populations.
GH-releasing factor (GRF)-stimulated GH release is dependent on a biphasic increase in free intracellular Ca2+ concentration [( Ca2+]i), resulting from an influx of Ca2+ into somatotrophs, while the inhibitory action of somatostatin (SRIF) on basal and GRF-induced GH release results from its ability to lower [Ca2+]i by inhibiting Ca2+ influx. This study was carried out to investigate the mechanism by which GRF and SRIF regulate [Ca2+]i to control GH release. The roles of ion channels, cAMP-dependent processes, and protein kinase-C (PKC) were investigated by measuring changes in [Ca2+]i, 45Ca influx, and GH release when purified rat somatotrophs were exposed to high K+, cAMP analogs, prostaglandin E2, as well as the PKC activators 1,2-dioctanoyl-glycerol and phorbol 12-myristate 13-acetate. High K+ depolarization produced a rapid and transient increase in [Ca2+]i, while cAMP and prostaglandin E2 led to a sustained elevated [Ca2+]i. PKC activators produced a transient increase in [Ca2+]i, followed by a decrease to below baseline. All secretagogues tested raised [Ca2+]i by stimulating Ca2+ influx through L-type voltage-sensitive Ca2+ channels (VSCC), since the increases in [Ca2+]i were blocked by incubation in Ca2(+)-free medium and by the dihydropyridine Ca2+ antagonist nifedipine. SRIF lowered [Ca2+]i by blocking the Ca2+ influx stimulated by all of these GH secretagogues except high K+. These results are consistent with the model in which GRF initiates its action by increasing Na+ conductance to depolarize the somatotroph via cAMP. This depolarization would stimulate Ca2+ influx through VSCC, which would result in the first phase of the GRF-dependent increase in [Ca2+]i. This increase in [Ca2+]i would stimulate Ca2+ removal from the cytosol by activating Ca-ATPase via Ca-calmodulin and/or PKC. This would result in the lowering of [Ca2+]i to the plateau level of the second phase of the GRF response. SRIF prevents the GRF-induced increase in [Ca2+]i by increasing K+ conductance and, thus, hyperpolarizing the cell. Hyperpolarization would close VSCC, leading to a decrease in Ca2+ influx, with a subsequent drop in [Ca2+]i.
The secretion of GH is strikingly episodic. We have suggested that the timing of the episodic bursts of GH secretion is set by somatostatin (SRIF) withdrawal, whereas the magnitude of the bursts is determined by the amount of GH-releasing factor (GRF) impinging on the somatotrophs before and during SRIF withdrawal. We have now used an in vitro model of perifused rat pars distalis cells to examine the interaction of SRIF and GRF on GH release and, in particular, to examine the effect of GRF on the magnitude of the burst of GH release that follows SRIF withdrawal. After 30 min of perifusion with SRIF (10(-9) M), there follows an immediate but small burst of GH release. The burst of GH release following concurrent perifusion with SRIF plus GRF (10(-10) M) is increased, with a 7.5- to 9.5-fold increase in the peak secretion rate. When GRF is maintained after the withdrawal of SRIF, the peak secretion rate is not different from that seen after simple withdrawal of both SRIF and GRF, but the duration of the burst is increased. These data demonstrate that the presence of GRF during SRIF perifusion, while not altering basal release, does strikingly increase the post-SRIF release of GH. We propose that a similar relation applies in vivo, where SRIF withdrawal sets the timing of the episodic bursts of GH release, whereas GRF determines the magnitude.
This study was carried out to investigate the role of free intracellular Ca2+ ([Ca2+]i) in the action of GH-releasing factor (GRF) by determining whether GRF causes and increase in [Ca2+]i and whether this increase results from changes in Ca2+ influx/efflux and/or mobilization of intracellular Ca2+ stores. We used a purified preparation of normal rat somatotrophs and examined the changes in 45Ca uptake, [Ca2+]i measured with indo-1, intracellular cAMP, and GH release induced by GRF. GRF stimulated a concentration-related biphasic increase in [Ca2+]i. Both the GRF-dependent increase in [Ca2+]i and GH release were blocked by incubation in low Ca2+ medium and by the organic Ca2+ antagonists nifedipine and diltiazem. The measurement of 45Ca uptake, in both steady state and nonsteady state conditions, demonstrated directly that GRF stimulates Ca2+ influx into somatotrophs. These data demonstrate that the GRF-stimulated increase in [Ca2+]i is dependent on Ca2+ influx. Redistribution of intracellularly stored Ca2+ could not be detected, even though intracellular Ca2+ stores were present. Therefore, the increase is due to Ca2+ influx, and the biphasic nature of the increase in [Ca2+]i induced by GRF is due to a difference in the rate of activation of Ca2+ influx and Ca2+ removal from the cytosol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.