A region of the caudal ventrolateral medullary reticular formation (CVLM) participates in baroreceptor, vestibulosympathetic, and somatosympathetic reflexes; the adjacent retroambigual area is involved in generating respiratory-related activity and is essential for control of the upper airway during vocalization. However, little is known about the connections of the CVLM in the cat. In order to determine the locations of terminations of CVLM neurons, the anterograde tracers Phaseolus vulgaris leucoagglutinin and tetramethylrhodamine dextran amine were injected into this region. These injections produced a dense concentration of labeled axons throughout the lateral medullary reticular formation (lateral tegmental field), including the retrofacial nucleus and nucleus ambiguus, regions of the rostral ventrolateral medulla, the lateral and ventrolateral aspects of the hypoglossal nucleus, nucleus intercalatus, and the facial nucleus. A smaller number of labeled axons were located in the medial, lateral, and commissural subnuclei of nucleus tractus solitarius, the A5 region of the pontine reticular formation, the ventral and medial portions of the spinal and motor trigeminal nuclei, locus coeruleus, and the parabrachial nucleus. We confirmed the projection from the CVLM to both the rostral ventrolateral medulla and lateral tegmental field using retrograde tracing. Injections of biotinylated dextran amine or Fluorogold into these regions resulted in retrogradely labeled cell bodies in the CVLM. However, the neurons projecting to the lateral tegmental field were located mainly dorsal to those projecting to the rostral ventrolateral medulla, suggesting that these neurons form two groups, possibly with different inputs. Injections of retrograde tracers into the lateral tegmental field and rostral ventrolateral medulla also produced labeled cell bodies in other regions, including the medial and inferior vestibular nuclei and nucleus solitarius. These data are consistent with the view that the CVLM of the cat is a multifunctional area that regulates blood pressure, produces vocalization, affects the shape of the oral cavity, and elicits contraction of particular facial muscles.
Lesions of the lateral medullary reticular formation caudal to the obex abolish vestibulosympathetic and somatosympathetic responses; this area also contains neurons that mediate baroreceptor reflexes. Recordings were made from neurons in the caudal medullary reticular formation of cats that were decerebrate or anesthetized using alpha-chloralose-urethan to determine whether common neurons responded to electrical stimulation of vestibular and hindlimb afferents and had cardiac-related (i.e., baroreceptor) inputs. Many neurons in the ventrolateral portion of the caudal reticular formation received labyrinthine inputs, and they were interspersed with neurons that received baroreceptor signals. However, virtually none of the units received convergent baroreceptor and vestibular inputs, suggesting that separate pathways from the caudal ventrolateral medulla mediate baroreceptor and vestibulosympathetic reflexes. Furthermore, the neurons that received labyrinthine signals could not be antidromically activated from electrodes inserted into the rostral ventrolateral medulla, which is known to mediate vestibulosympathetic responses; thus an indirect pathway must convey vestibular inputs from the caudal to rostral medullary reticular formation. Over 75% of both neurons with baroreceptor inputs and cells with vestibular signals responded to sciatic nerve stimulation, suggesting that more than one pathway from the caudal medulla may mediate somatosympathetic responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.