Safe implementation of nanotechnology and nanomedicine requires an in-depth understanding of the life cycle of nanoparticles in the body. Here, we investigate the long-term fate of gold/iron oxide heterostructures after intravenous injection in mice. We show these heterostructures degrade in vivo and that the magnetic and optical properties change during the degradation process. These particles eventually eliminate from the body. The comparison of two different coating shells for heterostructures, amphiphilic polymer or polyethylene glycol, reveals the long lasting impact of initial surface properties on the nanocrystal degradability and on the kinetics of elimination of magnetic iron and gold from liver and spleen. Modulation of nanoparticles reactivity to the biological environment by the choice of materials and surface functionalization may provide new directions in the design of multifunctional nanomedicines with predictable fate.
The identification and characterisation of high-frequency climatic changes during the Holocene requires natural archives with precise and accurate chronological control, which is usually difficult to achieve using only 14C chronologies. The presence of time-spaced tephra beds in Quaternary Mediterranean successions represents an additional, independent tool for dating and correlating different sedimentary archives. These tephra layers are potentially useful for resolving long-standing issues in paleoclimatology and can help towards correlating terrestrial and marine paleoclimate archives. Known major tephras of regional extent derive from central and southern Italy, the Hellenic Arc, and from Anatolia. A striking feature of major Holocene tephra deposition events in the Mediterranean is that they are clustered rather than randomly distributed in time. Several tephra layers occurred at the time of the S1 sapropel formation between c. 8.4 and 9.0 ka BP (Mercato, Gabellotto-Fiumebianco/E1, Cappadocia) and other important tephra layers (Avellino, Agnano Monte Spina, ‘Khabur’ and Santorini/Thera) occurred during the second and third millennia BC, marking an important and complex phase of environmental changes during the mid- to late-Holocene climatic transition. There is great potential in using cryptotephra to overlap geographically Italian volcanic ashes with those originating from the Aegean and Anatolia, in order to connect regional tephrochronologies between the central and eastern Mediterranean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.