Fluids and melts liberated from subducting oceanic crust recycle lithophile elements back into the mantle wedge, facilitate melting and ultimately lead to prolific subduction-zone arc volcanism. The nature and composition of the mobile phases generated in the subducting slab at high pressures have, however, remained largely unknown. Here we report direct LA-ICPMS measurements of the composition of fluids and melts equilibrated with a basaltic eclogite at pressures equivalent to depths in the Earth of 120-180 km and temperatures of 700-1,200 degrees C. The resultant liquid/mineral partition coefficients constrain the recycling rates of key elements. The dichotomy of dehydration versus melting at 120 km depth is expressed through contrasting behaviour of many trace elements (U/Th, Sr, Ba, Be and the light rare-earth elements). At pressures equivalent to 180 km depth, however, a supercritical liquid with melt-like solubilities for the investigated trace elements is observed, even at low temperatures. This mobilizes most of the key trace elements (except the heavy rare-earth elements, Y and Sc) and thus limits fluid-phase transfer of geochemical signatures in subduction zones to pressures less than 6 GPa.
Recent research has shown that certain Li-oxide garnets with high mechanical, thermal, chemical, and electrochemical stability are excellent fast Li-ion conductors. However, the detailed crystal chemistry of Li-oxide garnets is not well understood, nor is the relationship between crystal chemistry and conduction behavior. An investigation was undertaken to understand the crystal chemical and structural properties, as well as the stability relations, of Li(7)La(3)Zr(2)O(12) garnet, which is the best conducting Li-oxide garnet discovered to date. Two different sintering methods produced Li-oxide garnet but with slightly different compositions and different grain sizes. The first sintering method, involving ceramic crucibles in initial synthesis steps and later sealed Pt capsules, produced single crystals up to roughly 100 μm in size. Electron microprobe and laser ablation inductively coupled plasma mass spectrometry (ICP-MS) measurements show small amounts of Al in the garnet, probably originating from the crucibles. The crystal structure of this phase was determined using X-ray single-crystal diffraction every 100 K from 100 K up to 500 K. The crystals are cubic with space group Ia3̅d at all temperatures. The atomic displacement parameters and Li-site occupancies were measured. Li atoms could be located on at least two structural sites that are partially occupied, while other Li atoms in the structure appear to be delocalized. (27)Al NMR spectra show two main resonances that are interpreted as indicating that minor Al occurs on the two different Li sites. Li NMR spectra show a single narrow resonance at 1.2-1.3 ppm indicating fast Li-ion diffusion at room temperature. The chemical shift value indicates that the Li atoms spend most of their time at the tetrahedrally coordinated C (24d) site. The second synthesis method, using solely Pt crucibles during sintering, produced fine-grained Li(7)La(3)Zr(2)O(12) crystals. This material was studied by X-ray powder diffraction at different temperatures between 25 and 200 °C. This phase is tetragonal at room temperature and undergoes a phase transition to a cubic phase between 100 and 150 °C. Cubic "Li(7)La(3)Zr(2)O(12)" may be stabilized at ambient conditions relative to its slightly less conducting tetragonal modification via small amounts of Al(3+). Several crystal chemical properties appear to promote the high Li-ion conductivity in cubic Al-containing Li(7)La(3)Zr(2)O(12). They are (i) isotropic three-dimensional Li-diffusion pathways, (ii) closely spaced Li sites and Li delocalization that allow for easy and fast Li diffusion, and (iii) low occupancies at the Li sites, which may also be enhanced by the heterovalent substitution Al(3+) ⇔ 3Li.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.