The structural genes (hup) of the H2 uptake hydrogenase of Rhodobacter capsulatus were isolated from a cosmid gene library of R. capsulatus DNA by hybridization of Bradyrhizobium japonicum. The R. capsulatus genes were localized on a 3.5 kb HindIII fragment. The fragment, cloned onto plasmid pAC76, restored hydrogenase activity and autotrophic growth of the R. capsulatus mutant JP91, deficient in hydrogenase activity (Hup-). The nucleotide sequence, determined by the dideoxy chain termination method, revealed the presence of two open reading frames. The gene encoding the large subunit of hydrogenase (hupL) was identified from the size of its protein product (68,108 dalton) and by alignment with the NH2 amino acid protein sequence determined by Edman degradation. Upstream and separated from the large subunit by only three nucleotides was a gene encoding a 34,256 dalton polypeptide. Its amino acid sequence showed 80% identity with the small subunit of the hydrogenase of B. japonicum. The gene was identified as the structural gene of the small subunit of R. capsulatus hydrogenase (hupS). The R. capsulatus hydrogenase also showed homology of Desulfovibrio baculatus and D. gigas. In the R. capsulatus hydrogenase the Cys residues (13 in the small subunit and 12 in the large subunit) were not arranged in the typical configuration found in [4Fe-4S] feredoxins.
The hupM gene, previously called ORFX, found downstream from and contiguous with the structural hydrogenase genes hupS and hupL in Rhodobacter capsulatus, is shown here to form a single hupSLM transcription unit with the two other genes. The hupM gene was inactivated by interposon mutagenesis. The two selected mutants, BCX1 and BCX2, which contained the kanamycin-resistance gene in opposite orientation, still exhibited hydrogenase activity when assayed with the artificial electron acceptors benzylviologen and methylene blue. However, the hydrogenase was not physiologically active in these mutants, which could not grow autotrophically and were unable to recycle electrons to nitrogenase or to respire on H2. The hupM gene starts nine base pairs downstream from the TGA stop codon of hupL gene, which encodes the large subunit of the [NiFe]hydrogenase of Rhodobacter capsulatus. The three contiguous genes hupS, hupL and hupM were subcloned downstream from the promoter of hupSL, either with the promoter in the correct orientation (plasmid pBC8) or with the promoter in the opposite orientation (plasmid pBC9), then the constructs were introduced into the mutant strains. Only plasmid pBC8 could restore the formation of a competent hydrogenase in mutants BCX1 and BCX2, indicating that the hupM gene is expressed only from the hupSL promoter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.