This research covers the development of a green, sensitive, selective, and simple electrochemical strategy for the detection of ciprofloxacin (Cipro) in biological fluids, wastewater, and drug samples. Herein the carbon paste electrode was modified using reduced graphene oxide and clay composite based on the electrochemical reduction of GO (ErGO-Clay@CPE). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry were used for the electro-characterization of ErGO-Clay@CPE, and the results supported that the ErGO-Clay improved the electrode's conductivity and surface area. Moreover, the electrochemical performance was inspected by differential pulse voltammetry (DPV) and chronoamperometry in phosphate buffer (PB, pH=6). The data demonstrated a magnificent sensitivity of ErGO-Clay@CPE regarding Cipro. Under the optimized operating conditions, the electro-analytical response was linearly related to the Cipro concentration in the range of 0.03-2.0-50.0 µM with a lower detection limit (DL = 3 × SDblank / P) and sensitivity of 2.24 nM and 96.28 µA µM-1 cm-2, respectively. Furthermore, the ErGO-Clay@CPE was applied to identify the Cipro in drugs, wastewater, and urine samples, with satisfied recoveries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.