The applications of the pH low insertion peptide (pHLIP) in cancer diagnosis and cross-membrane cargo delivery have drawn increasing attention in the past decade. With its origin as the transmembrane (TM) helix C of bacteriorhodopsin, pHLIP is also an important model for understanding how pH can affect the folding and topogenesis of a TM α-helix. Protonations of multiple D/E residues transform pHLIP from an unstructured coil at membrane surface (known as state II, at pH ≥ 7) to a TM α-helix (state III, pH ≤ 5.3). While these initial and end states of pHLIP insertion have been firmly established, what happens at the intervening pH values is less clear. However, the intervening pH range is most relevant to pHLIP−cell interactions in the acidic extracellular tumor environment (and in the endosomes within cells). Here, using advanced solid-state NMR spectroscopy with palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine unilamellar vesicles as the model membrane, we systematically examined the state of pHLIP−membrane interactions (in terms of the membrane locations of D/E residues, as well as lipid dynamics) at the intervening pH values of 6.4, 6.1, and 5.8, along with the known states at pH 7.4 and 5.3. Thermodynamic intermediate states distinct from the initial and end states were discovered to exist at each of the intervening pH examined. They support a multistage model of pHLIP insertion in which the D/E titrations occur in a defined sequence at distinct intermediate pH values. This multistage model has important ramifications in pHLIP applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.