Aim: The current study aimed to assess the knowledge, attitude, and practices pertaining to antibiotic usage among the field veterinarians who serve as nodal officers playing a crucial role in disseminating knowledge to the farmers regarding livestock management practices in India.
Materials and Methods: A pilot study was conducted in which 106 of the 173 field veterinarians of Haryana, India, agreed to contribute through their valuable participation in the study. The collected data were critically analyzed by simple descriptive statistics, and the responses were ranked using Garrett's ranking method.
Results: Our study found that most of the clinicians were aware of the fundamental clinical aspects of antibiotic resistance (AR), i.e., the general causes and transmission of resistance, response during treatment failure, and safe disposal of hospital waste. Further, implementation of "antibiotic stewardship" (rational/responsible use of antibiotics) and interruption of AR transmission by means of cross-kingdom pathogens are two ways to restrict the spread of resistant pathogens which were not in the clinical purview of majority of the clinicians. This highlights a lack of awareness and scope of improving clinician's knowledge pertaining to AR. Moreover, we got to know the methodology adopted by farmers for disposal of infected milk from diseased udders as well as their attitude toward diseased and unproductive animals.
Conclusion: This study provides snippets of the current animal husbandry practices prevalent at the field level which would assist to plug in the gaps of knowledge regarding AR among the veterinarians as well as the general public and serve to reduce its deleterious impacts in Indian animal farming as well as in the world through the concept of "One World, One Health."
Food-borne diseases are on the rise, and these will likely continue as a public health concern into the coming decades. Majority of foodborne outbreaks are linked to infections by emerging foodborne pathogens such as Campylobacter, Salmonella, Listeria monocytogenes, and Escherichia coli O157:H7. Foodborne pathogen identification becomes crucial in such scenarios to control these pathogens, associated outbreaks, and diseases. Pathogen detection systems have evolved as essential food safety tools to combat microbial threats and experts are striving to develop robust, accurate and ergonomic rapid pathogen-detection kits. Lectin, a ubiquitous biomolecule (sugar binding proteins) present in almost all domains of life is a promising alternative to molecular based methods as a bio-recognition molecule in detection of foodborne pathogens for biosensor applications, owing to its multivalency and spatial organization of ligands. Due to their extensive prevalence, lectin-based biosensors have become the most sought-after bio-recognition molecules in biosensor applications because of increased sensitivity and reduced cost when compared to immune-based biosensors. The current paper discusses the claimed benefits of lectin as a superior bio-recognition molecule, as well as its numerous applications in biosensor creation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.