Activation of either the A(1) adenosine receptor (A(1)R) or the A(3) adenosine receptor (A(3)R), by their specific agonists CCPA and Cl-IB-MECA, respectively, protects cardiac cells in culture against ischemic injury. Yet the full protective mechanism remains unclear. In this study, we therefore examined the involvement of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) phosphorylation in this protective intracellular signaling mechanism. Furthermore, we investigated whether p38 MAPK phosphorylation occurs upstream or downstream from the opening of mitochondrial ATP-sensitive potassium (K(ATP)) channels. The role of p38 MAPK activation in the intracellular signaling process was studied in cultured cardiomyocytes subjected to hypoxia, that were pretreated with CCPA or Cl-IB-MECA or diazoxide (a mitochondrial K(ATP) channel opener) with and without SB203580 (a specific inhibitor of phosphorylated p38 MAPK). Cardiomyocytes were also pretreated with anisomycin (p38 MAPK activator) with and without 5-hydroxy decanoic acid (5HD) (a mitochondrial K(ATP) channel blocker). SB203580 together with the CCPA, Cl-IB-MECA or diazoxide abrogated the protection against hypoxia as shown by the level of ATP, lactate dehydrogenase (LDH) release, and propidium iodide (PI) staining. Anisomycin protected the cardiomyocytes against ischemic injury and this protection was abrogated by SB203580 but not by 5HD. Conclusions Activation of A(1)R or A(3)R by CCPA or Cl-IB-MECA, respectively, protects cardiomyocytes from hypoxia via phosphorylation of p38 MAPK, which is located downstream from the mitochondrial K(ATP) channel opening. Elucidating the signaling pathway by which adenosine receptor agonists protect cardiomyocytes from hypoxic damage, will facilitate the development of anti ischemic drugs.
Adenosine released during myocardial ischemia mediates cardioprotective preconditioning. Multivalent drugs covalently bound to nanocarriers may differ greatly in chemical and biological properties from the corresponding monomeric agents. Here, we conjugated chemically functionalized nucleosides to poly(amidoamine) (PAMAM) dendrimeric polymers and investigated their effects in rat primary cardiac cell cultures and in the isolated heart. Three conjugates of A3 adenosine receptor (AR) agonists, chain-functionalized at the C2 or N6 position, were cardioprotective, with greater potency than monomeric agonist Cl-IB-MECA. Multivalent amide-linked MRS5216 was selective for A1 and A3ARs, and triazole-linked MRS5246 and MRS5539 (optionally containing fluorescent label) were A3AR-selective. The conjugates protected ischemic rat cardiomyocytes, an effect blocked by an A3AR antagonist MRS1523, and isolated hearts with significantly improved infarct size, rate of pressure product, and rate of contraction and relaxation. Thus, strategically derivatized nucleosides tethered to biocompatible polymeric carriers display enhanced cardioprotective potency via activation of A3AR on the cardiomyocyte surface.
The hypothesis of the present study is that cardiomyocytes subjected to prolonged ischemia, may release survival factors that will protect new cardiac cells from ischemic stress. We exposed neonatal rat cardiomyocyte primary cultures to hypoxia, collected the supernatant, treated intact cardiac cells by this posthypoxic supernatant, and exposed them to hypoxia. The results show cardioprotection of the treated cells compared with the untreated ones. We named the collected posthypoxic supernatant "conditioned medium" (CM), which acts in a dose-dependent manner to protect new cardiac cells from hypoxia: 100 or 75% of CM diluted in phosphate-buffered saline (PBS) protected cells as if they were not exposed to hypoxia (P < 0.001). When CM was removed from the cells before hypoxia, protection was not observed. CM also protected skeletal muscle cultures from hypoxia, but not cardiac cells against H(2)O(2)-induced cell damage. Finally, CM treatment protected the isolated heart in Langendorff set-up against ischemia. Smaller infarct size (9.9 ± 4.4% vs. 28.3 ± 8.5%, P < 0.05), better Rate Pressure Product (67 ± 11% vs. 48.6 ± 13.4%, P < 0.05) and better rate of contraction and relaxation were observed following ischemia and reperfusion (1341 ± 399 mmHg/s vs. 951 ± 349 mmHg/s, P < 0.05 and 1053 ± 347 mmHg/s vs. 736 ± 314 mmHg/s, P < 0.05). To conclude, there are factors that are released from the heart cells subjected to ischemia/hypoxia that protects cardiomyocytes from ischemic stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.