Human placental villi are surfaced by an outer multinucleated syncytiotrophoblast and underlying mononucleated cytotrophoblasts. Conflicting data have attributed one, or the other, of these villous trophoblast phenotypes to undergo enhanced apoptosis in complicated pregnancies, compared to term, normotensive pregnancies. We use high-resolution confocal microscopy after co-staining for E-cadherin, as a trophoblast plasma membrane marker, and for the cleavage products of cytokeratin 18 and PARP1, as markers for caspase-mediated apoptosis, to distinguish between apoptotic cytotrophoblasts and apoptosis within the syncytiotrophoblast. We test the hypothesis that increased caspase-mediated apoptosis occurs in villi of placentas derived from pregnancies complicated by preeclampsia, intrauterine growth restriction (IUGR), or both. We find significantly elevated apoptosis in villous cytotrophoblasts from women with preeclampsia and/or IUGR, compared to term, normotensive pregnancies. Apoptosis of cytotrophoblasts in villi from complicated pregnancies appears to progress similarly to what we found previously for apoptotic cytotrophoblasts in villi from in term, normotensive pregnancies. Notably, caspase-mediated apoptosis was not detectable in regions with intact syncytiotrophoblast, suggesting strong repression of apoptosis in this trophoblast phenotype in vivo. We suggest that the elevated apoptosis in cytotrophoblasts in preeclampsia contributes to the placental dysfunction characteristic of this disorder. We also propose that repression of apoptosis in the syncytiotrophoblast is important to prevent apoptosis sweeping throughout the syncytium, which would result in widespread death of this essential interface for maternal-fetal exchange.
Autophagy is a burgeoning area of research from yeast to humans. Although previously described as a death pathway, autophagy is now considered an important survival phenomenon in response to environmental stressors to which most organs are exposed. Despite an ever expanding literature in non-placental cells, studies of autophagy in the placenta are lagging. We review the regulation of autophagy, summarize available placental studies of autophagy, and highlight potential areas for future research. We believe that such studies will yield novel insights into how placentas protect the survival of the species by “self-eating”.
Human placental villi are surfaced by the syncytiotrophoblast, a multinucleated, epithelial-cell layer that functions in maternal-fetal exchange. Mononucleated cytotrophoblasts are subjacent to the syncytiotrophoblast. Using confocal fluorescence microscopy of third-trimester villi, we previously found that cytotrophoblasts are often interdigitated into the syncytiotrophoblast, that cytotrophoblasts undergo caspase-mediated apoptosis, and that apoptosis is much lower, and perhaps completely inhibited, in intact syncytiotrophoblast lacking fibrin-type fibrinoid. Previous analysis of primary cultures of human trophoblasts also indicated lower levels of apoptosis in syncytiotrophoblast compared to cytotrophoblasts. Here, using confocal microscopy we find that cultured cytotrophoblasts and syncytiotrophoblasts display complex structural relationships, as in vivo, and that apoptosis of a cytotrophoblast or syncytiotrophoblast does not induce apoptosis of adjacent trophoblasts. Using live-cell imaging of mitochondrial depolarization and nuclear condensation in cultured syncytiotrophoblasts, we show apoptosis initiates in a localized region and propagates radially at ~five μm/min with no loss of velocity until the entire syncytium has undergone apoptosis. The rate of propagation is similar in cases of spontaneous apoptosis and in apoptosis that occurs in the presence of cobalt chloride or rotenone, two inducers of apoptosis. We suggest that inhibition of syncytiotrophoblast apoptosis in vivo is important to prevent widespread syncytiotrophoblast death, which would result in placental dysfunction and contribute to poor pregnancy outcomes.
Introduction Oxygen is pivotal in placental development and function. In vitro culture of human trophoblasts provides a useful model to study this phenomenon, but a hotly debated issue is whether or not the oxygen tension of the culture conditions mimics in vivo conditions. We tested the hypothesis that ambient oxygen tensions in culture reflect the pericellular oxygen levels. Methods We used a microelectrode oxygen sensor to measure the concentration of dissolved oxygen in the culture medium equilibrated with 21%, 8% or <0.5% oxygen. Results The concentration of oxygen in medium without cells resembled that in the ambient atmosphere. The oxygen concentration present in medium bathing trophoblasts was remarkably dependent on the depth within the medium where sampling occurred, and the oxygen concentration within the overlying atmosphere was not reflected in medium immediately adjacent to the cells. Indeed, the pericellular oxygen concentration was in a range that most would consider severe hypoxia, at ≤ 0.6% oxygen or about 4.6 mm Hg, when the overlying atmosphere was 21% oxygen. Conclusions We conclude that culture conditions of 21% oxygen are unable to replicate the pO2 of 40–60 mm Hg commonly attributed to the maternal blood in the intervillous space in the second and third trimesters of pregnancy. We further surmise that oxygen atmospheres in culture conditions between 0.5% and 21% provide different oxygen fluxes in the immediate pericellular environment yet can still yield insights into the responses of human trophoblast to different oxygen conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.