Vertical profiles of ozone obtained from ozonesondes in Brazzaville, Congo (4 degrees S, 15 degrees E), and Ascension Island (8 degrees S, 15 degrees W) show that large quantities of tropospheric ozone are present over southern Africa and the adjacent eastern tropical South Atlantic Ocean. The origin of this pollution is widespread biomass burning in Africa. These measurements support satellite-derived tropospheric ozone data that demonstrate that ozone originating from this region is transported throughout most of the Southern Hemisphere. Seasonally high levels of carbon monoxide and methane observed at middle- and high-latitude stations in Africa, Australia, and Antarctica likely reflect the effects of this distant biomass burning. These data suggest that even the most remote regions on this planet may be significantly more polluted than previously believed.
In this paper, the ''Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions'' (ESCOMPTE) program is presented. The ESCOMPTE program is used to produce a relevant set of data for testing and evaluating regional pollution models. It includes high-resolution (in space and time) atmospheric emission inventories and field experiments, and covers an area of 120 Â 120 km, centered over the Marseilles-Berre area in the southeast of France during Summer 2001. This region presents a high occurrence of photochemical pollution events, which result from numerous industrial and urban sources of primary pollutants. From the dynamical characteristics of the area, sea-breeze circulation and channeling effects due to terrain features highly influence the location of the pollutant plumes. ESCOMPTE will provide a highly documented framework for dynamics and chemisty studies.Campaign strategies and experimental set up are described. During the planning phase, existing modeling results helped defining the experimental design. The campaign involved surface measurement networks, remote sensing, ship-borne, balloon-borne, and airplane measurements. Mean standard meteorological parameters and turbulent fluxes, ozone, ozone precursors, photochemically active trace gases, and aerosols were measured. Five intensive observation periods (IOPs) were documented using a wide spectrum of instruments, involving aircraft (7)
In the French Mediterranean basin the large city of Marseille and its industrialized suburbs (oil plants in the Fos-Berre area) are major pollutant sources that cause frequent and hazardous pollution episodes, especially in summer when intense solar heating enhances the photochemical activity and when the sea breeze circulation redistributes pollutants farther north in the countryside. This paper summarizes the findings of 5 years of research on the sea breeze in southern France and related mesoscale transport and dilution of pollutants within the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE) program held in June and July 2001. This paper provides an overview of the experimental and numerical challenges identified before the ESCOMPTE field experiment and summarizes the key findings made in observation, simulation, and theory. We specifically address the role of large-scale atmospheric circulation to local ozone vertical distribution and the mesoscale processes driving horizontal advection of pollutants and vertical transport and mixing via entrainment at the top of the sea breeze or at the front and venting along the sloped terrain. The crucial importance of the interactions between processes of various spatial and temporal scales is thus highlighted. The advances in numerical modeling and forecasting of sea breeze events and ozone pollution episodes in southern France are also underlined. Finally, we conclude and point out some open research questions needing further investigation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.