In recent years, much interest has been observed in the field of phenol-based antioxidants. As a result of this, many analytical methods have been developed for the purpose of the quantification of phenolic and polyphenolic antioxidant capacities in biological materials. Many of these methods have been altered for application toward the in vitro assessment of antioxidant activities in animal and human model systems as well as in vivo. Due to the varied applicability and usage, methods for the assessment of phenol antioxidant capacities have become so widespread that they are often misused. It is the intent of this work to review the chemistry behind the antioxidant activity of phenolics as well as summarize the many methods applicable for the measurement of in vitro phenolic antioxidant capacity.
Monochloropropanediol (MCPD) fatty acid esters are process contaminants generated during the deodorisation of edible oils. In particular, MCPD diesters are found in higher abundance in refined palm oil than other edible oils. In the present study, a series of model reactions mimicking palm oil deodorisation has been conducted with pure acylglycerols in the presence or absence of either organic or inorganic chlorine-containing compounds. Results showed that the bulk of MCPD diesters are formed above 200°C through the reaction of organochlorines with triacylglycerols (TAG). Additional experiments confirmed that this reaction can be initiated during palm oil deodorisation by hydrogen chloride (HCl) gas evolved through the thermal degradation of organochlorines present in the oil. Therein, the majority of the ultimately produced MCPD diesters are the result of HCl reacting with TAG, via protonation, followed by the elimination of a fatty acid residue. Two possible MCPD diester formation mechanisms are highlighted, both of which involve acyloxonium ion reactive intermediates. Investigations with pure TAG regio-isomers showed that MCPD ester formation is regioselective and the sn-1(3) position of the glycerol backbone is favoured.
This paper reports new insights at the molecular level into the route of a worldwide problem of the food industry: the occurrence of monochloro-propanediol (MCPD) esters. The application of mass defect-driven workflows is described to generate a hypothesis on the identity and occurrence of those thermally labile, chlorinated contaminant precursors that may act as chlorine donors during the formation of MCPD esters. For the first time, holistic mass-defect filtering of isotope signatures is used to pinpoint completely unknown and unexpected chlorine-containing substances naturally present in various extracts of palm fruit and partially and fully refined oils. Supervised multivariate analysis showed the effective classification of samples from various stages of industrial processing, suggesting that these steps strongly impact a complex and dynamic pool of chlorinated substances. In-vitro experiments confirmed that several of these naturally occurring chlorinated plant constituents decompose upon heat treatment, thus potentially being a source of chlorine for further reactions with palm oil lipids in a subsequent chlorination cascade. It is hypothesised that during oil refining the organochlorines naturally present in palm fruits act as a 'chlorine source' for the generation MCPD diesters. This discovery implies that industrial efforts targeting the mitigation of chlorinated substances must intervene at the earliest possible production stage or preferably even prior to oil processing. Current performance and limitations of mass-defect filtering are discussed and future developments are outlined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.