We have developed a novel technique for high-throughput screening of recombinant antibodies, based on the creation of antibody arrays. Our method uses robotic picking and high-density gridding of bacteria containing antibody genes followed by filter-based enzyme-linked immunosorbent assay (ELISA) screening to identify clones that express binding antibody fragments. By eliminating the need for liquid handling, we can thereby screen up to 18,342 different antibody clones at a time and, because the clones are arrayed from master stocks, the same antibodies can be double spotted and screened simultaneously against 15 different antigens. We have used our technique in several different applications, including isolating antibodies against impure proteins and complex antigens, where several rounds of phage display often fail. Our results indicate that antibody arrays can be used to identify differentially expressed proteins.
Recently we demonstrated that human antibody fragments with binding activities against foreign antigens can be isolated from repertoires of rearranged V‐genes derived from the mRNA of peripheral blood lymphocytes (PBLs) from unimmunized humans. The heavy and light chain V‐genes were shuffled at random and cloned for display as single‐chain Fv (scFv) fragments on the surface of filamentous phage, and the fragments selected by binding of the phage to antigen. Here we show that from the same phage library we can make scFv fragments encoded by both unmutated and mutated V‐genes, with high specificities of binding to human self‐antigens. Several of the affinity purified scFv fragments were shown to be a mixture of monomers and dimers in solution by FPLC gel filtration and the binding kinetics of the dimers were determined using surface plasmon resonance (k(on) = 10(5)‐10(6) M‐1s‐1, k(off) = 10(−2)s‐1 and Ka = 10(7) M‐1). The kinetics of association are typical of known Ab‐protein interactions, but the kinetics of dissociation are relatively fast. For therapeutic application, the binding affinities of such antibodies could be improved in vitro by mutation and selection for slower dissociation kinetics.
The majority of gene-targeting experiments in mice are performed in 129Sv-derived embryonic stem (ES) cell lines, which are generally considered to be more reliable at colonizing the germ line than ES cells derived from other strains. Gene targeting is reliant on homologous recombination of a targeting vector with the host ES cell genome. The efficiency of recombination is affected by many factors, including the isogenicity (H. te Riele et al., 1992, Proc. Natl. Acad. Sci. USA 89, 5128-5132) and the length of homologous sequence of the targeting vector and the location of the target locus. Here we describe the double-end sequencing and mapping of 84,507 bacterial artificial chromosomes (BACs) generated from AB2.2 ES cell DNA (129S7/SvEvBrd-Hprtb-m2). We have aligned these BACs against the mouse genome and displayed them on the Ensembl genome browser, DAS: 129S7/AB2.2. This library has an average insert size of 110.68 kb and average depth of genome coverage of 3.63- and 1.24-fold across the autosomes and sex chromosomes, respectively. Over 97% of the mouse genome and 99.1% of Ensembl genes are covered by clones from this library. This publicly available BAC resource can be used for the rapid construction of targeting vectors via recombineering. Furthermore, we show that targeting vectors containing DNA recombineered from this BAC library can be used to target genes efficiently in several 129-derived ES cell lines.
To date, there has been no systematic study of the process of affinity maturation of human antibodies. We therefore sequenced the variable region genes (V genes) of 14 human monoclonal antibodies specific for the erythrocyte Rh(D) alloantigen and determined the germline gene segments of origin and extent of somatic hypermutation. These data were correlated with determinations of antibody affinity. The four IgM antibodies (low affinity) appear to be derived from two germline heavy chain variable region gene segments and one or two germline light chain variable region gene segments and were not extensively mutated. The 10 IgG antibodies (higher affinity) appear to be derived from somatic hypermutation of these V gene segments and by use of new V gene segments or V gene segment combinations (repertoire shift). Affinity generally increased with increasing somatic hypermutation; on average, there were 8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.