ABSTRACT. We have determined the ice mass evolution of the Antarctic and Greenland ice sheets (AIS and GIS) and
Since June, 2018, the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) is extending the 15-year monthly mass change record of the GRACE mission, which ended in June 2017. The GRACE-FO instrument and flight system performance has improved over GRACE. Better attitude solutions and enhanced pointing performance result in reduced fuel consumption and gravity range rate post-fit residuals. One accelerometer requires additional calibrations due to unexpected measurement noise. The GRACE-FO gravity and mass change fields from June 2018 through December 2019 continue the GRACE record at an equivalent precision and spatiotemporal sampling. During this period, GRACE-FO observed large interannual terrestrial water variations associated with excess rainfall (Central US, Middle East), drought (Europe, Australia), and ice melt (Greenland). These observations are consistent with independent mass change estimates, providing high confidence that no intermission biases exist from GRACE to GRACE-FO, despite the 11-month gap. GRACE-FO has also successfully demonstrated satellite-to-satellite laser ranging interferometry. Plain Language Summary Mass change is a fundamental climate system indicator and provides an integrated global view of how Earth's water cycle and energy balance are evolving. The Gravity Recovery and Climate Experiment (GRACE) mission monitored mass changes every month from 2002 through 2017. Since June 2018, GRACE Follow-On (GRACE-FO) continues this data record, tracking and monitoring changes in ice sheets and glaciers, near-surface and underground water storage, as well as changes in sea level and ocean currents. GRACE-FO instruments have been successfully calibrated and are providing new monthly mass change observations at a consistent spatial resolution and data quality with GRACE. Since its launch, GRACE-FO has measured record land water storage changes in 2018 and 2019 in response to extreme heat waves and droughts over Europe and Australia, as well as to extreme rainfall events over the United States and Middle East. In the summer of 2019, GRACE-FO measured record-level Greenland mass loss rates. A novel laser ranging interferometer was successfully demonstrated on GRACE-FO, laying the groundwork for improved future satellite gravity observations.
[1] We have analyzed Ka-band range rate (KBRR) and Deep Space Network (DSN) data from the Gravity Recovery and Interior Laboratory (GRAIL) primary mission (1 March to 29 May 2012) to derive gravity models of the Moon to degree 420, 540, and 660 in spherical harmonics. For these models, GRGM420A, GRGM540A, and GRGM660PRIM, a Kaula constraint was applied only beyond degree 330. Variance-component estimation (VCE) was used to adjust the a priori weights and obtain a calibrated error covariance. The global root-mean-square error in the gravity anomalies computed from the error covariance to 320 320 is 0.77 mGal, compared to 29.0 mGal with the pre-GRAIL model derived with the SELENE mission data, SGM150J, only to 140 140. The global correlations with the Lunar Orbiter Laser Altimeter-derived topography are larger than 0.985 between`= 120 and 330. The free-air gravity anomalies, especially over the lunar farside, display a dramatic increase in detail compared to the pre-GRAIL models (SGM150J and LP150Q) and, through degree 320, are free of the orbit-track-related artifacts present in the earlier models. For GRAIL, we obtain an a posteriori fit to the S-band DSN data of 0.13 mm/s. The a posteriori fits to the KBRR data range from 0.08 to 1.5 μm/s for GRGM420A and from 0.03 to 0.06 μm/s for GRGM660PRIM. Using the GRAIL data, we obtain solutions for the degree 2 Love numbers, k 20 =0.024615˙0.0000914, k 21 =0.023915˙0.0000132, and k 22 =0.024852˙0.0000167, and a preliminary solution for the k 30 Love number of k 30 =0.00734˙0.0015, where the Love number error sigmas are those obtained with VCE.
We have derived a gravity field solution in spherical harmonics to degree and order 900, GRGM900C, from the tracking data of the Gravity Recovery and Interior Laboratory (GRAIL) Primary (1 March to 29 May 2012) and Extended Missions (30 August to 14 December 2012). A power law constraint of 3.6 ×10−4/ℓ2 was applied only for degree ℓ greater than 600. The model produces global correlations of gravity, and gravity predicted from lunar topography of ≥ 0.98 through degree 638. The model's degree strength varies from a minimum of 575–675 over the central nearside and farside to 900 over the polar regions. The model fits the Extended Mission Ka-Band Range Rate data through 17 November 2012 at 0.13 μm/s RMS, whereas the last month of Ka-Band Range-Rate data obtained from altitudes of 2–10 km fit at 0.98 μm/s RMS, indicating that there is still signal inherent in the tracking data beyond degree 900.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.