A study is carried out for the two-dimensional Casson flow of conducting fluid in the presence of a magnetic field. The governing non-linear equations of motion are transformed in two dimensional form. A solution is obtained by the homotopy perturbation method and it is valid for moderately large Reynolds numbers for injection at the wall. Also an efficient algorithm based finite difference scheme is developed to solve the reduced coupled ordinary differential equations with necessary boundary conditions. The effects of Reynolds number, the magnetic parameter, pradantl number Casson parameter on flow velocity and temperature distribution is analysed for increasing the non-Newtonian characteristics of the fluid by both the methods and results agree well with previous work for special cases. It is observed that the overall effect of magnetic field is same as Hartmann flow. Further the analysis predicts that the heat transfer at the surface of the disks increases with increase in Reynolds number, magnetic parameter and Prandtl number, shear stress at lower disk also calculated. The study of such phenomenon is beneficial in the industry for thermal control in polymeric processing.
A study is carried out for the two dimensional laminar flow of conducting fluid in presence of magnetic field. The governing non-linear equations of motion are transformed in to dimensionaless form. A solution is obtained by homotopy perturbation method and it is valid for moderately large Reynolds numbers for injection at the wall. Also an efficient algorithm based finite difference scheme is developed to solve the reduced coupled ordinary differential equations with necessary boundary conditions. The effects of Reynolds number, the magnetic parameter and the pradantle number on flow velocity and tempratare distribution is analysed by both the methods and results agree well with previous work for special cases. It is observed that overall effect of magnetic field is same as Hartmann flow. Further the analysis predicts that the heat transfer at the surface of the disks increases with increase in Reynolds number, magnetic parameter and Prandle number. The shear stress at the wall decreases with increase in injection, whearas increase with increase in magnetic parameter. The study of such phenomenon is beneficial in the industry for thermal control in polymeric processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.