[1] For more than 7 years, the Los Alamos built Mars Odyssey Neutron Spectrometer (MONS) has measured the neutron albedo from Mars in three consecutive energy bands: thermal, epithermal, and fast neutron ranges. This paper synthesizes the teamwork on the optimization of the signal extraction, the corrections for observational biases and instrument specific characteristics. Results are presented for neutron time series with an emphasis on seasonal variations at the poles. Frost-free data are mapped on to the surface, and the apparent random nature of the counting-rate distribution per pixel is analyzed: for epithermal neutrons, the relative standard deviation is less than 0.5% equatorward of 45°and up to 2.5% above this latitude limit; for thermal neutrons it is 1% and 2.5% respectively; and for fast neutrons it is 3% and 5.5%, respectively. New science results are obtained with regards to the distribution of water-equivalent hydrogen (WEH) on Mars. Under the assumption of a single uniform distribution of hydrogen with depth, WEH abundances range from 2% near the equator to 80% at the poles, with ±2% to 4.5% relative error bars. A best approximation to a two-layered global distribution of a lower-level hydrogen-rich substrate beneath an upper layer of varying thicknesses is generated using an average hydration level of an upper layer of 2 wt %, derived in the paper by Feldman et al. (2011). Such results are discussed and compared with regard to previous publications on the MONS instrument.
The Kaguya gamma-ray spectrometer (KGRS) has great potential to precisely determine the absolute abundances of natural radioactive elements K, Th and U on the lunar surface because of its excellent spectroscopic performance. In order to achieve the best performance of the KGRS, it is important to know the spatial response function (SRF) that describes the directional sensitivity of the KGRS. The SRF is derived by a series of Monte Carlo simulations of gamma-ray transport in the sensor of the KGRS using the full-fledged simulation model of the KGRS, and is studied in detail. In this paper, the method for deriving absolute abundance of natural radioactive elements based on the SRF is described for the 194 S. Kobayashi et al.analysis of KGRS data, which is also applicable to any gamma-ray remote sensings. In the preliminary analysis of KGRS data, we determined the absolute abundances of K and Th on the lunar surface without using any previous knowledge of chemical information gained from Apollo samples, lunar meteorites and/or previous lunar remote sensings. The results are compared with the previous measurements and the difference and the correspondence are discussed. Future detailed analysis of KGRS data will provide new and more precise maps of K, Th and U on the lunar surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.