Highway crashes, along with the property damage, personal injuries, and fatalities that they cause, continue to present one of the most significant and critical transportation problems. At the same time, provision of safe travel is one of the main goals of any transportation system. For this reason, both in transportation research and practice much attention has been given to the analysis and modeling of traffic crashes, including the development of models that can be applied to predict crash occurrence and crash severity. In general, such models assess short-term crash risks at a given highway facility, thus providing intelligence that can be used to identify and implement traffic operations strategies for crash mitigation and prevention. This paper presents several crash risk and injury severity assessment models applied at a highway segment level, considering the input data that is typically collected or readily available to most transportation agencies in real-time and at a regional network scale, which would render them readily applicable in practice. The input data included roadway geometry characteristics, traffic flow characteristics, and weather condition data. The paper develops, tests, and compares the performance of models that employ Random effects Bayesian Logistics Regression, Gaussian Naïve Bayes, K-Nearest Neighbor, Random Forest, and Gradient Boosting Machine methods. The paper applies random oversampling examples (ROSE) method to deal with the problem of data imbalance associated with the injury severity analysis. The models were trained and tested using a dataset of 10,155 crashes that occurred on two interstate highways in New Jersey over a two-year period. The paper also analyzes the potential improvement in the prediction abilities of the tested models by adding reactive data to the analysis. To that end, traffic crashes were classified in multiple classes based on the driver age and the vehicle age to assess the impact of these attributes on driver injury severity outcomes. The results of this analysis are promising, showing that the simultaneous use of reactive and proactive data can improve the prediction performance of the presented models.
The total time delay of electrical breakdown (td) and its dependence on current, flowing through a discharge in pure nitrogen after breakdown, has been investigated, using three geometrically identical diodes filled at pressures of 1.33, 4.00 and 13.33 mbar. It was shown that curve minima depend on the nitrogen pressure in the diodes and seem to be related to the maxima in concentrations of metastable states inducing secondary electron emission from the cathode.
This research evaluates the impact of In-vehicle Signal Advisory System (ITSAS) on signalized arterial. ITSAS provides individual drivers equipped with a mobile communication device with advisory speed information enabling to minimize the time delay and fuel consumption when crossing intersection. Given the instantaneous vehicular driving information, such as position, speed, and acceleration rate, ITSAS produces advisory speed information by taking into consideration the traffic signal changes at a downstream intersection. The advisory speed information includes not only an optimal speed range updated every 300-ft for individual drivers but also a descriptive message to warn drivers stop to ensure safety at the downstream intersection. Unlike other similar Connected Vehicles applications for intersection management, ITSAS does not require Roadside Equipment (RSE) to disseminate the advisory speed information as it is designed to exploit commercial cellular network service (i.e., 3G and 4G-LTE). Thus, ITSAS can be easily plugged into existing traffic control management system to rapidly conduct its implementation without significant additional cost. This research presents the field evaluations of ITSAS on a signalized corridor in New Jersey, which discovered significant travel time savings for the equipped vehicle.
Express lanes (ELs) implementation is a proven strategy to deal with freeway traffic congestion. Dynamic toll pricing schemes effectively achieve reliable travel time on ELs. The primary inputs for the typical dynamic pricing algorithms are vehicular volumes and speeds derived from the data collected by sensors installed along the ELs. Thus, the operation of dynamic pricing critically depends on the accuracy of data collected by such traffic sensors. However, no previous research has been conducted to explicitly investigate the impact of sensor failures and erroneous sensors’ data on toll computations. This research fills this gap by examining the effects of sensor failure and faulty detection scenarios on ELs tolls calculated by a dynamic pricing algorithm. The paper’s methodology relies on applying the dynamic toll pricing algorithm implemented in the field and utilizing the fundamental speed-volume relationship to ‘simulate’ the sensors’ reported data. We implemented the methodology in a case study of ELs on Interstate-95 in Southeast Florida. The results have shown that the tolls increase when sensors erroneously report higher than actual traffic demand. Moreover, it has been found that the accuracy of individual sensors and the number of sensors utilized to estimate traffic conditions are critical for accurate toll calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.