Due to the deep socioeconomic implications, induced seismicity is a timely and increasingly relevant topic of interest for the general public. Cases of induced seismicity have a global distribution and involve a large number of industrial operations, with many documented cases from as far back to the beginning of the twentieth century. However, the sparse and fragmented documentation available makes it difficult to have a clear picture on our understanding of the physical phenomenon and consequently in our ability to mitigate the risk associated with induced seismicity. This review presents a unified and concise summary of the still open questions related to monitoring, discrimination, and management of induced seismicity in the European context and, when possible, provides potential answers. We further discuss selected critical European cases of induced seismicity, which led to the suspension or reduction of the related industrial activities.
The increase in number and strength of shallow induced seismicity connected to the Groningen gas field since 2003 and the occurrence of a M L 3.6 event in 2012 started the development of a full probabilistic seismic hazard assessment (PSHA) for Groningen, required by the regulator. Densification of the monitoring network resulted in a decrease of the location threshold and magnitude of completeness down to ∼ M L = 0.5. Combined with a detailed local velocity model, epicentre accuracy could be reduced from 0.5-1 km to 0.1-0.3 km and a vertical resolution ∼0.3 km. Time-dependent seismic activity is observed and taken into account into PSHA calculations. Development of the Ground Motion Model for Groningen resulted in a significant reduction of the hazard. Comparison of different implementations of the PSHA, using different source models, based on either a compaction model and production scenarios or on extrapolation of past seismicity, and methods of calculation, shows similar results.
The potential for building damage and personal injury due to induced earthquakes in the Groningen gas field is being modeled in order to inform risk management decisions. To facilitate the quantitative estimation of the induced seismic hazard and risk, a ground motion prediction model has been developed for response spectral accelerations and duration due to these earthquakes that originate within the reservoir at 3 km depth. The model is consistent with the motions recorded from small-magnitude events and captures the epistemic uncertainty associated with extrapolation to larger magnitudes. In order to reflect the conditions in the field, the model first predicts accelerations at a rock horizon some 800 m below the surface and then convolves these motions with frequency-dependent nonlinear amplification factors assigned to zones across the study area. The variability of the ground motions is modeled in all of its constituent parts at the rock and surface levels.
A key element in the assessment of seismic hazard and risk due to induced earthquakes in the Groningen gas field is a model for the prediction of ground motions. Rather than using ground-motion prediction equations with generic site amplification factors conditioned on proxy parameters such as V S30 , a field-wide zonation of frequency-dependent nonlinear amplification factors has been developed. Each amplification factor is associated with a measure of site-to-site variability that captures the variation of V S profiles and hence amplification factors across each zone, as well as the influence of the uncertainty in the modulus reduction and damping functions for each soil layer. This model can be used in conjunction with the predictions of response spectral accelerations at a reference rock horizon at a depth of about 800 m to calculate fully probabilistic estimates of the hazard in terms of ground shaking at the surface for a large region potentially affected by induced earthquakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.