A single-cylinder two-stroke (DDC 1-71) diesel engine has been fueled with natural gas directly injected at high pressure into the engine cylinder. Prior to injection of the natural gas, a quantity of diesel fuel is injected into the cylinder (from the same injector) to provide for gas ignition. Tests have been conducted at medium load and speed over a wide range of injection timing, and with both conventional diesel and gas/diesel operation. With natural gas fueling, significant reduction in nitrogen oxide emissions have been measured without significant loss in efficiency, relative to conventional diesel operation. Using measurements of cylinder pressure development, a new method of combustion analysis has been used to estimate mass burning rate, burned gas temperature, and rate of nitrogen oxide (NO) generation. The method uses a nonlinear regression technique to determine the distribution with crank angle of the cylinder heat loss rate. The method assumes that NO formation takes place within one turbulent mixing time following combustion of each fuel-air increment. Comparison of measured and calculated NO concentration in the exhaust over the whole range of injection timing shows that for both conventional diesel and gas/diesel operation the effective turbulent mixing period is equivalent to 4 degrees of crank angle at 1250 RPM. The results demonstrate that a mass burned method can be used to infer cylinder temperature distributions and NO formation rate as well as the progress of combustion. [S0742-4795(00)02101-3]
A multizone thermodynamic method has been developed to determine combustion rate and NO formation from measured cylinder pressures and performance of two-stroke diesel engines. Integral to the analytical method is a nonlinear fit to the combustion chamber heat loss; the fit is consistent with the overall energy balance and with measured fuel consumption rate and exhaust temperature. The method assumes equilibrium combustion properties except for NO, whose relatively slow formation is estimated using the extended Zeldovich mechanism in the post-flame gas during a period of one mixing time. Application of the method to a 2-stroke diesel engine indicates a post-flame mixing time of 0.55 ms or 4 deg crank angle at 1250 rpm, yielding exhaust concentrations of NO considerably less than what would have been expected from equilibrium-then-sudden-freezing considerations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.