The attenuating properties of several types of lead (Pb)-based and non-Pb radiation shielding materials were studied and a correlation was made of radiation attenuation, materials properties, calculated spectra and ambient dose equivalent. Utilizing the well-characterized x-ray and gamma ray beams at the National Research Council of Canada, air kerma measurements were used to compare a variety of commercial and pre-commercial radiation shielding materials over mean energy ranges from 39 to 205 keV. The EGSnrc Monte Carlo user code cavity. cpp was extended to provide computed spectra for a variety of elements that have been used as a replacement for Pb in radiation shielding garments. Computed air kerma values were compared with experimental values and with the SRS-30 catalogue of diagnostic spectra available through the Institute of Physics and Engineering in Medicine Report 78. In addition to garment materials, measurements also included pure Pb sheets, allowing direct comparisons to the common industry standards of 0.25 and 0.5 mm "lead equivalent." The parameter "lead equivalent" is misleading, since photon attenuation properties for all materials (including Pb) vary significantly over the energy spectrum, with the largest variations occurring in the diagnostic imaging range. Furthermore, air kerma measurements are typically made to determine attenuation properties without reference to the measures of biological damage such as ambient dose equivalent, which also vary significantly with air kerma over the diagnostic imaging energy range. A single material or combination cannot provide optimum shielding for all energy ranges. However, appropriate choice of materials for a particular energy range can offer significantly improved shielding per unit mass over traditional Pb-based materials.
Dosimetry protocols recommend that ionization chambers used in radiation therapy be pre-irradiated until they 'settle', i.e., until a stable reading is obtained. Previous reports have claimed that a lack of pre-irradiation could result in errors up to several per cent. Recently, data collected for a large number of commonly used ion chambers at the Institute for National Measurement Standards, NRC, Canada, have been collated and analysed, with additional data contributed by the National Physical Laboratory, UK. With this data set, it was possible to relate patterns of ion chamber behaviour to design parameters. While several mechanisms seem to contribute to this behaviour, the most obvious correlations implicate the type of insulator surrounding the central collector electrode, the extent of collector electrode shielding and possibly the area of the insulator exposed at the base of the active air volume. The results show that ion chambers with electrode connections guarded up to the active air volume settle quickly (approximately 9 min) and the change in response is small (less than approximately 0.2%). For ion chambers where the guard connection surrounding the central collector does not extend up to the active air volume, settling times of 15-20 min and an associated change in response of up to 1% are typical. For some models of ion chambers, the irradiation rate may also play a role in settling behaviour. Settling times for the ion chambers studied here were found to be independent of beam quality.
A three-way improvement to the calibration measurement system was successful in eliminating the observed variations, resulting in an electrometer calibration measurement system that is unaffected by humidity and allowing reliable year-round calibrations of any electrometer encountered since the implementation of these changes.
Three models of electronic personal dosemeters (EPDs)-Siemens Mk 2.3, Rados RAD-60S and Vertec Bleeper Sv-were irradiated with seven photon beam qualities: 60Co, 137Cs and the ISO narrow spectrum series X-ray qualities N-250, N-200, N-150, N-60 and N-20. The personal dose equivalent rates delivered to the devices varied between 0.002 and 0.25 mSv s(-1). Measurements were made with the EPDs mounted free-in-air as well as against Lucite and water phantoms. Results for all models of EPDs showed differences in personal dose equivalent energy response for different energies covered by this range of radiation qualities, with different models showing variations from 15 to 65%. In some cases, the personal dose equivalent rate response of these devices varied by a factor of 3 between irradiations at typical calibration dose rates and those normally encountered by nuclear energy workers.
Purpose: A new Canadian primary standard for high dose rate (HDR) brachytherapy calibrations has been developed, offering improved accuracy through the use of a Pb wedge to determine the scatter component ksc at each measurement position. Methods: The new HDR standard calibrates, 192,Ir brachytherapy sources in terms of air‐kerma strength (SK). An HDR brachytherapy calibration rig was manufactured and commissioned. This rig utilizes a low (0.5 m) aluminum table to which is mounted a motorized single‐axis linear stage. An afterloader feeds an, 192,Ir source vertically up through a fixed 1 m tall PMMA tube column attached to the table. A second 1 m PMMA tube column is attached to a movable carriage on the linear stage and supports a spherical graphite ionization chamber. A series of 10 measurements are made with the source‐to‐detector distance varying from 10 cm to 55 cm in 5 cm increments. The largest correction factor, ksc (scatter from the stage, walls, floor and ceiling) is determined using a Pb‐wedge technique to block the direct beam and allow a direct measurement of scatter at each distance. The small distance correction is then a simple matter to determine, allowing a more accurate determination of the source strength based on distance squared. Results: : Measurements with a Pb‐wedge technique for determining ksc demonstrated that the scatter component for each position varied, in contradiction to the constant‐scatter supposition of the alternative 7‐distance measurement calculation. These measurements were supported by EGSnrc Monte Carlo simulations. The disagreement between these two techniques for determining ksc represent an (SK) difference of approximately 0.4%. Conclusions: The new HDR brachytherapy calibration capability demonstrates higher accuracy through a more accurate scatter correction. This standard will participate in a formal international comparison for HDR brachytherapy, tentatively scheduled for 2011.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.