[1] Uranium extraction, processing, and storage have resulted in a legacy of uraniumcontaminated groundwater aquifers worldwide. An emerging remediation technology for such sites is the in situ immobilization of uranium via biostimulation of dissimilatory metal-reducing bacteria (DMRB). While this approach has been successfully demonstrated in experimental studies, advances in understanding and optimization of the technique are needed. The motivation of this work was to understand better how dualporosity (DP) porous media may affect immobilization efficiency via interactions with the dominant geochemical and microbial processes. A biogeochemical reactive transport model was developed for uranium immobilization by DMRB in both single-and dualporosity porous media. The impact that microbial residence location has on the success of biostimulated U(VI) immobilization in DP porous media was explored under various porosity and mass transfer conditions. Simulations suggest that DP media are likely to show delayed U(VI) immobilization relative to single-porosity systems. U(VI) immobilization is predicted to be less when microbial activity is restricted to diffusiondominant regions but not when restricted to advective-dominant regions. The results further highlight the importance of characterizing the bioresidency status of field sites if biogeochemical models are to predict accurately remediation schemes in physically heterogeneous media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.