We experimentally, analytically, and numerically demonstrate the nonlinear photo-induced plasmon-assisted magnetic response that occurs with metallic nanoparticles in aqueous solution. We measure the scattered spectra from solutions of gold nanospheres (10(-7) fill factor) and observe appreciable changes when simultaneously applying DC magnetic fields and illuminating samples with light. The magnetic response is achieved using light from a solar simulator at unprecedented low illumination intensities (< 1W/cm(2)) and is sustained when the magnetic field is removed. Distinctly different behavior is observed depending on the circular-polarization handedness given a fixed magnetic field. Nanoparticle aggregation is more likely to occur when the circular-polarization trajectory opposes the solenoid current that produces the magnetic field. Using Mie's theoretical solution, we show how vortex orbital surface currents lead to an increased and anisotropic electrical conductivity, which shifts the scattered spectra in agreement with experimental results. The single-nanoparticle plasmon-induced magnetization, which couples the scattered and incident electric fields, changes sign with orthogonal circular-polarization handedness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.