This paper reviews the fracture control plan for the Alliance Pipeline, which is planned for operation in 2000. This natural-gas pipeline is 2627 km (1858 miles) long, running from British Columbia, Canada to Illinois, USA. Interest in the fracture control for this pipeline results from its design, which is based on transporting a rich natural gas (up to 15% ethane, 3% propane) at a relatively high pressure 12,000 kPa (1740 psi). This break from traditional pressures and lean gases, which frequently are constrained by incremental expansion, is more efficient and more economical than previous natural gas pipelines. Use of higher pressures and rich gas requires adequate fracture control for the line pipe, fittings, and valves. This fracture control has been achieved for the Alliance Pipeline by specifying high-toughness steels, in terms of both fracture-initiation and fracture-propagation resistance for the line pipe, fittings and heavy wall components. While beneficial from an economics viewpoint, the need for higher toughnesses raised concern over the validity of the fracture control plan, which was based on existing and new technology. The concern focused on fracture arrest using high toughness steels. The concern was associated with characterizing fracture arrest resistance using Charpy V-notch impact toughness, the most commonly used method to measure fracture arrest resistance. Developments were undertaken to address problems associated with the use of higher-toughness steel and these were validated with full-scale pipe burst tests to demonstrate the viability of the fracture control plan. The solution involved extending existing methods to address much higher toughness steels, which provided a significantly improved correlation between fracture arrest predictions and experimental results. In the burst tests, data was collected to validate the Alliance design and also to extend the database of fracture arrest data to assist future pipelines. Data such as the pressure between the pipe and soil as the gas escapes from the pipe, the sound levels in the atmosphere, the movement and strains in the pipe ahead of the running fracture were instrumented in the test and the available results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.