Recent research works indicate that magnesium alloy can be used for constructing light weight armor because of its density, which is 35% lower than aluminium and 77% lower than steel and also it exhibits superior vibration damping and better failure mechanisms than the contemporary ballistic materials. In this study, numerical simulations were carried out in a monolithic magnesium AZ31B plate using AUTODYN software to understand the effect of Impact velocity and plate thickness on the deformation of target plates. The projectiles are normally impacted on target plates of varying thickness plates at different velocities. Lagrangian solver was used for meshing, in which the grid developed by the solver distorts with the material helps in eliminating the inaccuracies caused by the cell growth due to the shear force of the bullet impact. The simulation results are verified with the experimental data available in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.