Abstract-A compact, fast, and accurate realization of a digital Gaussian variate generator (GVG) based on the Box-Muller algorithm is presented. The proposed GVG has a faster Gaussian sample generation rate and higher tail accuracy with a lower hardware cost than published designs. The GVG design can be readily configured to achieve arbitrary tail accuracy (i.e., with a proposed 16-bit datapath up to 15 times the standard deviation ) with only small variations in hardware utilization, and without degrading the output sample rate. Polynomial curve fitting is utilized along with a hybrid (i.e., combination of logarithmic and uniform) segmentation and a scaling scheme to maintain accuracy. A typical instantiation of the proposed GVG occupies only 534 configurable slices, two on-chip block memories, and three dedicated multipliers of the Xilinx Virtex-II XC2V4000-6 field-programmable gate array (FPGA) and operates at 248 MHz, generating 496 million Gaussian variates (GVs) per second within a range of 6 66 . To accurately achieve a range of 9 4 , the GVG uses 852 configurable slices, three block memories, and three on-chip dedicated multipliers of the same FPGA while still operating at 248 MHz, generating 496 million GVs per second. The core area and performance of a GVG implemented in a 90-nm CMOS technology are also given. The statistical characteristics of the GVG are evaluated and confirmed using multiple standard statistical goodness-of-fit tests.Index Terms-Box-Muller (BM) algorithm, field-programmable gate array (FPGA), Gaussian noise generator (GNG), low bit-error rate simulation, random number generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.