Physically based continuum creep damage mechanics (CDM) has been reviewed and shown to provide a unifying framework for some seemingly diverse methods of predicting design and remanent creep lifetimes. These methods—theta projection, omega parameter, Larson-Miller parameter, and Robinson’s life fraction rule—exhibit certain strengths in common with CDM, but also weaknesses which CDM identifies and avoids. CDM consists of sets of coupled rate equations for inelastic strain, internal stress, and microstructural evolution (damage) which can then be integrated under boundary conditions appropriate to the test or service operating conditions: constant load/temperature for creep; constant total strain for stress-relaxation, variable stress/temperature, etc. Other state-variable approaches to creep and cyclic plasticity (for example, those due to Bodner, Miller, Chaboche, and Robinson), differ from CDM mainly in concentrating on the primary/secondary stages of creep (or cyclic work-hardening) and/or by their introduction of damage in an empirical Kachanov manner. The application of physically based CDM to LCF/thermal fatigue and its potential for predicting lifetimes of welded joints are also discussed. [S0094-9930(00)00903-3]
A number of mechanisms-based constitutive equations were assessed in an effort to describe the creep behaviour of an aluminium alloy at 150°C. It was found that a sinh function of stress, rather than the usually used power law, is best able to describe the strain rate and rupture behaviour over the narrow stress range analysed. A single state variable theory which represents a dominant damage mechanism is not capable of predicting the shape of the tertiary curve; however, a two state variable theory which represents two mechanisms provides a good description. The two relevant mechanisms identified are creep-constrained cavitation and ageing of the particulate microstructure.The non-linear equations which describe both these physical mechanisms are complex and strongly coupled. This makes it difficult to determine the constants in the constitutive equations from experimental data. The paper reports the development of automated numerical optimization techniques which overcome these difficulties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.