[1] A cross-hole tracer test involving the simultaneous injection of two nonsorbing solute tracers with different diffusion coefficients (bromide and pentafluorobenzoate) and a weakly sorbing solute tracer (lithium ion) was conducted in a fractured granite near an underground nuclear test cavity in central Nevada. The test was conducted to (1) test a conceptual radionuclide transport model for the site and (2) obtain transport parameter estimates for predictive modeling. The differences between the responses of the two nonsorbing tracers (when normalized to injection masses) are consistent with a dualporosity transport system in which matrix diffusion is occurring. The large concentration attenuation of the sorbing tracer relative to the nonsorbing tracers suggests that diffusion occurs primarily into matrix pores, not simply into stagnant water within the fractures. The relative responses of the tracers at late times suggest that the diffusion-accessible matrix pore volume is possibly limited to only half the total volume of the flow system, implying that the effective retardation factor due to matrix diffusion may be as small as 1.5 for nonsorbing solutes in the system. The lower end of the range of possible sorption K d values deduced from the lithium response is greater than the upper 95% confidence bound of K d values measured in laboratory sorption tests using crushed granite from the site. This result suggests that the practice of using laboratory sorption data in field-scale transport predictions of cation-exchanging radionuclides, such as 137 Cs + and 90 Sr ++ , should be conservative for the SHOAL site.
Landfill covers are critical to waste containment, yet field performance of specific cover designs has not been well documented and seldom been compared in side-by-side testing. A study was conducted to assess the ability of landfill final covers to control percolation into underlying waste. Conventional covers employing resistive barriers as well as alternative covers relying on water-storage principles were monitored in large (10 x 20 m), instrumented drainage lysimeters over a range of climates at 11 field sites in the United States. Surface runoff was a small fraction of the water balance (0-10%, 4% on average) and was nearly insensitive to the cover slope, cover design, or climate. Lateral drainage from internal drainage layers was also a small fraction of the water balance (0-5.0%, 2.0% on average). Average percolation rates for the conventional covers with composite barriers (geomembrane over fine soil) typically were less than 12 mm/yr (1.4% of precipitation) at humid locations and 1.5 mm/yr (0.4% of precipitation) at arid, semiarid, and subhumid locations. Average percolation rates for conventional covers with soil barriers in humid climates were between 52 and 195 mm/yr (6-17% of precipitation), probably due to preferential flow through defects in the soil barrier. Average percolation rates for alternative covers ranged between 33 and 160 mm/yr (6 and 18% of precipitation) in humid climates and generally less than 2.2 mm/yr (0.4% of precipitation) in arid, semiarid, and subhumid climates. One-half (five) of the alternative covers in arid, semiarid, and subhumid climates transmitted less than 0.1 mm of percolation, but two transmitted much more percolation (26.8 and 52 mm) than anticipated during design. The data collected support conclusions from other studies that detailed, site-specific design procedures are very important for successful performance of alternative landfill covers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.