Summary: An Italian family has been investigated in whom there was an inherited abnormality in the activity of coagulation factor X. This abnormality was confined to the intrinsic activation pathway, giving abnormal results in tests of this system, while the extrinsic pathway tested with tissue thromboplastin and Russell's viper venom, was normal. This is a previously undescribed abnormality, as other cases reported have had defective activity in the extrinsic pathways of coagulation. Immunological studies, using antibody neutralization techniques, revealed a normal concentration of factor X protein. The abnormal coagulation factor was not associated with a bleeding tendency. The inheritance pattern appeared to be of the autosomal recessive type.
Adenylate cyclase (AC) in pineal particulate fractions from rabbit, rat, cow, and the vole Microtus montanus was stimulated by L-norepinephrine (NE) and L-isoproterenol (ISO). NE stimulation of rabbit and bovine pineal AC was biphasic, with a plateau between 0.01 microM and 1.0 microM and additional stimulation by NE above 1.0 microM. Stimulation by different ISO concentrations gave a typical hyperbolic curve, and optimal stimulation by ISO exceeded that by NE. Melatonin decreased ISO and NE stimulation of AC 10-20%. Although, alpha-adrenergic agonists increase beta-agonist-mediated adenosine-3',5'-cyclic monophosphate (cyclic AMP) accumulation in intact pinealocytes, similar amplification of AC stimulation was not seen with broken-cell preparations. Most (60-70%) pineal guanylate cyclase (GC) was recovered in supernatant fractions after centrifugation of homogenates at 110,000 x g; this soluble GC was unaffected by potential agonists. Low concentrations (0.01-1 nM) of NE, ISO, and phenylephrine (PE) stimulated GC in impure and purified membrane fractions, but each inhibited at concentrations above 10 microM. All concentrations of ISO and NE inhibited GC in the presence of the alpha-agonist PE. Melatonin alone did not affect particulate GC, but L-ISO stimulation was not seen in the presence of equivalent concentrations of melatonin. The in vitro data are consistent with both alpha- and beta-receptor regulation of cyclic nucleotide metabolism in pinealocytes. Endogenous NE may differentially regulate cyclic AMP and guanosine-3',5'-cyclic monophosphate (cyclic GMP) in pineal; low NE concentrations that stimulate GC have only a slight effect on AC, but higher NE concentrations that inhibit GC maximally stimulate AC. Particulate GC and AC also were resolved by equilibrium centrifugation, to give several discrete peaks of enzyme activity. The results support the existence of several forms of AC and GC, which have different responses to adrenergic agonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.