The mechanism responsible for acquired decreased susceptibility to macrolides (14-membered erythromycin [Ery], 16-membered tylosin [Ty] and tilmicosin [Tm]) and to lincosamides (lincomycin [Ln]) was investigated in Mycoplasma synoviae, a pathogen that causes respiratory infections and synovitis in chicken and turkey. Sequence analysis of domains II and V of the two 23S rRNA alleles and ribosomal proteins L4 and L22 was performed on 49 M. synoviae isolates, M. synoviae type strain WVU1853, and reference strain FMT showing minimal inhibitory concentrations (MICs) to Ty (≤ 0.015 to 2 μg/ml), Tm (0.03 to ≥ 8 μg/ml), and Ln (0.125 to 8 μg/ml); MICs to Ery ranged from 32 to ≥ 128 μg/ml. Our results showed that the nucleotide substitution G748A (Escherichia coli numbering) in domain II of one or both 23S rRNA alleles may account for a slight increase in MICs to Ty and Tm (up to 0.5 and 2 μg/ml, respectively). No correlation between the presence of G748A and decreased susceptibility to Ln was found. However, the presence of the point mutations A2058G or A2059G in domain V of one or both alleles of the 23S rRNAs was correlated with a more significant decrease in susceptibility to Ty (1-2 μg/ml), Tm (≥ 8 μg/ml), and Ln (≥ 8 μg/ml). All M. synoviae isolates tested had a G2057A transition in the 23S rRNAs consistent with previously described intrinsic resistance to Ery. Mutations G64E (one isolate) and Q90K/H (two isolates) were identified in the L4 and L22 proteins, respectively, but their impact on decreased susceptibility to macrolides and lincomycin was not clear.
The objective of this study was to assess the in vitro antimicrobial susceptibility of 73 isolates of Mycoplasma bovis isolated from milk of dairy cattle herds of Belgium, Germany, and Italy. Minimal inhibitory concentration (MIC) values were determined by the microbroth dilution method for the following antimicrobials: erythromycin, spiramycin, tilmicosin, tylosin, lincomycin, enrofloxacin, doxycycline, oxytetracycline, florfenicol, and tiamulin. Macrolides, florfenicol, oxytetracycline, and enrofloxacin, were chosen because they represent antimicrobials families commonly used in several countries for treatment of M. bovis, and their MIC values in cattle population are reported in several studies, allowing a comparison with previous data. Doxycycline and tiamulin were selected to assess the susceptibility of M. bovis to new antimicrobials, because they are not registered in the European Union for the treatment of dairy cattle. Among the agents of the different antimicrobial classes, the macrolides showed the highest concentration to inhibit 90% of isolates (MIC90), all above the highest concentration tested: >8μg/mL for erythromycin, >16μg/mL for spiramycin, and >32μg/mL for tilmicosin and tylosin. Also the MIC90 of lincomycin was above the highest concentration tested (>32μg/mL), but the distribution of the MIC values was almost perfectly bimodal: 41 isolates had a MIC ≤0.5μg/mL and 30 isolates >32μg/mL. Oxytetracycline had a 2-fold higher concentration to inhibit 50% of isolates (2 vs. 0.5μg/mL) and 1-fold higher MIC90 (4 vs. 2μg/mL) than doxycycline. Enrofloxacin and florfenicol had both a MIC90 of 2μg/mL, whereas tiamulin had a MIC90 of 0.5μg/mL. Significant differences on the MIC values were found among the 3 countries for several antimicrobials: compared with Germany, Belgium and Italy showed significantly higher MIC for lincomycin, spiramycin, and tylosin, and lower for oxytetracycline and florfenicol. The Belgian isolates showed the lowest MIC for enrofloxacin compared with Germany and Italy. The MIC results obtained in our study suggest the presence of a high level of resistance of M. bovis isolates originating from milk to macrolides in all countries involved in this study. On the contrary, a low level of resistance was found against the antimicrobials that are not used in cattle, such as tiamulin and doxycycline, highlighting a possible link between antimicrobial treatments and development of resistance in the studied M. bovis population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.