The inception, and development of the cephalic skeleton of Barbus barbus from hatching to 24 days passes through periods of fast and slow growth; these rates are not the same in different parts of the skull. Trabeculae, parachordal plates, Meckelian cartilages and hyposymplecrics are present at hatching. Then the cartilaginous floor of the neurocranium develops, the pars quadrata, the hyoid bars and branchial arches elements appear shortly before the first movable dermal bones, the den taries, maxillae and opercles. The first bone of the braincase to appear is the parasphenoid; other bones develop subsequently and at the same time: the angular, quadrate, interopercle and fifth ceratobranchial. Later the splanchnocranium continues to develop at a relatively fast rate while the neurocranium shows little growth. The braincase does not begin to close before the 24th day, nor do the first bones of the skull roof appear, while the bucco-pharyngeal apparatus is complete, having the adult shape. The early constitution of the latter structures seems to be linked with the mechanical demands of biological functions such as breathing and feeding.
At hatching Scophthalmus maximus shows no cartilaginous and no bony structure. Meckel's cartilages appear when the fry are 1 day old, followed on day 2, by formation of the trabecular bars, fused at the outset to form a trabecula communis. Concurrently, the palatoquadrates complete the mandibular arch, and the first two pairs of ceratobranchials, associated with a pair of hyoid bars, form the beginnings of the hyobranchial system. By day 3, the parachordals have fused with the trabecular bars, the hyosymplectics have linked to the hyoid bars by interhyals, and the first four pairs of ceratobranchials have appeared. The first bony structures appear: the preoperculars. On day 8, the frontals develop above the orbits and the maxillaries and dentaries appear. On day 10, the primordia of the taeniae marginales appear, the palatoquadrates bear a pterygoid process, and to the branchial basket have been added the fifth pair of ceratobranchials and the four pairs of epibranchials. On day 12, both pairs of posterior pharyngobranchials are present. The premaxillaries develop in front of the maxillaires, and retroarticulars and the angulars complete the lower jaws. On day 13, a thin parasphenoid contributes to the floor of the neurocranium, and ectopterygoids and entopterygoids to the splanchnocranium. The set of opercular bones is complete. On day 15, the tectum synoticum closes the braincase posteriorly. The splanchnocranium possesses a basihyal and the pharyngobranchials of the first epibranchials. On day 18, the tectum posterius completes the dome of the braincase. The rear end and lateral walls of the skull are formed by the basioccipital, the exoccipitals, the pterotics, and the parietals. The suspensorium is nearly complete. From day 10, the first resorptions begin in parallel with the construction of the chondrocranium. Meckel's cartilages each split in two, then the posterior part of the trabecular bars disappears. On day 23, the right taenia marginalis separates from the lamina orbitonasalis and curves towards the centre. Simultaneously, the right eye begins its migration to the left. This is the only metamorphosis-linked asymmetry to appear during the development of the chondrocranium. On day 25, many more bony structures appear, a characteristic of this stage: the nasals, lateral ethmoids, mesethmoid, sphenotics, prootics, pleurosphenoids, epiotics, and supraoccipital. From this stage on, the bony structures continue to develop, while the front of the neurocranium and the jaws undergo a deep remodelling due to metamorphosis. The left taenia marginalis does not appear reduced until day 29. By day 45, there remain only a few small elements of the cartilaginous skull. 1998 The Fisheries Society of the British Isles
At hatching, Heterobranchus longifilis does not display any primordia of the cephalic skeleton. The latter appears 12 h post-hatching and develops in three stages up to day 16. The first stage (12 h to 2 days) involves almost exclusively the development of the chondrocranium. During the second period (days 3-8), dermal elements of the splanchnocranium appear. The final stage is marked by resorption of the cartilages, progressively replaced by ossifications (days 10-16). At their appearance the elements of the splanchnocranium are fused together, as are the first neurocranial elements. Later, the splanchnocranium splits up. By the time the yolk sac is completely resorbed, the buccal and pharyngeal jaws are present, the suspensoria and hyoid bars are partially developed, and the parasphenoid partially closes the hypophyseal fenestra. These structures delimit a buccal cavity that is probably functional, i.e. capable of participating in the intake of exogenous food. Next to continue its development is principally the splanchnocranium, completing the walls of the buccal cavity. Cartilage resorption parallels the appearance of endochondral ossifications (except for the trabecular bars). Braincase closure begins to accelerate once the buccal system is complete. 1997 The Fisheries Society of the British Isles No cephalic skeletal structure is visible. Day 1The first cartilaginous structures have appeared [ Fig. 1(a)]. They all belong to the splanchnocranium. These structures are: the hyosymplectic, the interhyal, the hyoid bar, the pars quadrata of the palato-quadrate, and Meckel's cartilage.
Histo- and immunohistochemical techniques have recently been used to study the fibre type and myosin expression in fish muscle during development. In the present work, embryonic, larval and adult myosin isozymes (heavy and light chains) and parvalbumin isotypes were analyzed, from fertization to the adult stage, by polyacrylamide gel electrophoresis of barbel (Barbus barbus L.) trunk muscle extracts. The examined myosins display the sequential transitions from embryonic to larval and adult forms characteristic of higher vertebrates. They are characterized by specific heavy chains but their light chains differ only by the LC1/LC3 stoichiometry with LC3 exceeding LC1 after 10 days. Sarcoplasmic parvalbumins show considerable and unforeseen developmental transitions in their isotype distribution: the PA II isotype first appears after hatching and becomes the predominant form until the length reaches about 6 cm. One month after hatching, the amount of PA II then decreases and the synthesis of PA III and IV further increases to reach the typical adult pattern at a size of 18 cm. These observations show that the distribution of parvalbumin isotypes reflects the stage of development. It suggests a specific role for each isotype in relation to muscle activity. Microscopy illustrates the progressive development of somites, muscles cells, and myofibrils, which accelerates at hatching when movements increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.