Milk, a rich source of nutrients, can be fractionated into a wide range of components for use in foods and beverages. With advancements in filtration technologies, micellar caseins and milk-derived whey proteins are now produced from skim milk using microfiltration. Microfiltered ingredients offer unique functional and nutritional benefits that can be exploited in new product development. Microfiltration offers promise in cheesemaking, where microfiltered milk can be used for protein standardization to improve the yield and consistency of cheese and help with operation throughputs. Micellar casein concentrates and milk whey proteins could offer unique functional and flavor properties in various food applications. Consumer desires for safe, nutritious, and clean-label foods could be potential growth opportunities for these new ingredients. The application of micellar casein concentrates in protein standardization could offer a window of opportunity to US cheese makers by improving yields and throughputs in manufacturing plants.
Fluid milk may be pasteurized by high-temperature short-time pasteurization (HTST) or ultrapasteurization (UP). Literature suggests that UP increases milk astringency, but definitive studies have not demonstrated this effect. Thus, the objective of this study was to determine the effects of pasteurization method, fat content, homogenization pressure, and storage time on milk sensory and mechanical behaviors. Raw skim (<0.2% fat), 2%, and 5% fat milk was pasteurized in duplicate by indirect UP (140°C, 2.3 s) or by HTST pasteurization (78°C, 15 s), homogenized at 20.7 MPa, and stored at 4°C for 8 wk. Additionally, 2% fat milk was processed by indirect UP and homogenized at 13.8, 20.7, and 27.6 MPa and stored at 4°C for 8 wk. Sensory profiling, instrumental viscosity, and friction profiles of all milk were evaluated at 25°C after storage times of 1, 4, and 8 wk. Sodium dodecyl sulfate PAGE and confocal laser scanning microscopy were used to determine protein structural changes in milk at these time points. Fresh HTST milk was processed at wk 7 for wk 8 evaluations. Ultrapasteurization increased milk sensory and instrumental viscosity compared with HTST pasteurization. Increased fat content increased sensory and instrumental viscosity, and decreased astringency and friction profiles. Astringency, mixed regimen friction profiles, and sensory viscosity also increased for UP versus HTST. Increased storage time showed no effect on sensory viscosity or mechanical viscosity. However, increased storage time generally resulted in increased friction profiles and astringency. Sodium dodecyl sulfate PAGE and confocal laser scanning microscopy showed increased denatured whey protein in UP milk compared with HTST milk. The aggregates or network formed by these proteins and casein micelles likely caused the increase in viscosity and friction profiles during storage. Homogenization pressure did not significantly affect friction behaviors, mechanical viscosity, or astringency; however, samples homogenized at 13.8 MPa versus 20.7 and 27.6 MPa showed higher sensory viscosity. Astringency was positively correlated with the friction coefficient at 100 m/s sliding speed (R = 0.71 for HTST milk and R = 0.74 for UP milk), and sensory viscosity was positively correlated with the mechanical viscosity at a shear rate of 50 s (R = 0.90). Thus, instrumental testing can be used to indicate certain sensory behaviors of milk.
Volatile sulfur compounds in ultra-pasteurized (UP) milk are the major contributors to sulfur/burnt and eggy flavors, and these flavors are disliked by consumers. Previous research has established distinct differences in flavor profiles of fluid milk processed by high temperature, short time pasteurization (HTST) and UP by direct steam injection (DSI-UP) or indirect heat (IND-UP). An understanding of the contribution of the individual milk proteins to sulfur off-flavors would clarify the source of sulfur flavors in UP milks. The objective of this study was to determine the source of volatile sulfur compounds in fluid milk with a specific focus on the comparison of heat treatment effects on milks by HTST and UP. Formulated skim milks (FSM) were manufactured by blending micellar casein concentrate and serum protein isolate (SPI). Three different caseins as a percentage of true protein (FSM95, FSM80, and FSM60) were formulated to determine the source of sulfur/burnt and eggy flavors. Freshly processed micellar casein concentrate or SPI were blended to achieve a true protein content of about 3.2%. Raw skim milk served as a control. Skim milk and FSM were pasteurized at 78°C for 15 s (HTST) or 140°C for 2.3 s by IND-UP or DSI-UP. The experiment was replicated twice. Sensory properties of milks and FSM were documented by descriptive sensory analysis. Volatile sulfur compounds in milks and FSM were evaluated using solid-phase microextraction followed by gas chromatography-triple quadrupole mass spectrometry combined with a sulfur selective flame photometric detector. The FSM with higher SPI as a percent of true protein had higher sensory sulfur/burnt and eggy flavors along with elevated concentrations of hydrogen sulfide and carbon disulfide compared with skim milk or FSM with lower proportions of SPI. Sulfur compounds including dimethyl sulfide, dimethyl disulfide, dimethyl trisulfide, dimethyl sulfoxide, and methional were not associated with sulfur/burnt and eggy flavors, which suggests that these compounds may not specifically contribute to the sulfur/burnt and eggy off-flavors of UP milks. Sensory panelists found higher overall aroma impact, and cooked, sulfur/burnt, and eggy flavors for DSI-UP, followed by IND-UP and HTST. The combination of sensory and instrumental methods used in the current study effectively identified that milk serum proteins are the source of sulfur compounds in milk, and further confirmed the contribution of hydrogen sulfide and carbon disulfide to eggy and sulfur/burnt flavors, respectively.
Astringency is the sensation of mouth drying and puckering, and it has also been described as a loss of lubrication in the mouth. Astringency is perceived as an increase in oral friction or roughness. Astringency caused by tannins and other polyphenols has been well documented and studied. Whey proteins are popular for their functional and nutritional quality, but they exhibit astringency, particularly under acidic conditions popular in high acid (pH 3.4) whey protein beverages. Acids cause astringency, but acidic protein beverages have higher astringency than acid alone. Whey proteins are able to interact with salivary proteins, which removes the lubricating saliva layer of the mouth. Whey proteins can also interact directly with epithelial tissue. These various mechanisms of astringency limit whey protein ingredient applications because astringency is undesirable to consumers. A better understanding of the causes of whey protein astringency will improve our ability to produce products that have high consumer liking and deliver excellent nutrition.
Whey protein ingredients are used in a wide variety of products and are added primarily for nutritional benefits or functionality, not for flavor. However, the processes used to further refine fluid whey produce and encourage development of off-flavors that carry through to the final product. From the milk source to spray drying, each step contributes to the oxidation of lipids, which negatively affects flavor. An understanding of the sources of these flavor constituents and volatile compounds, as well as how they are formed during processing and handling, are important to eliminate or reduce undesirable flavors and for understanding how to best incorporate these ingredients into high-quality finished products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.