A key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (<0.6 microtesla) at 4563.5 ± 0.1 million years ago, ~3.8 million years after solar system formation. This indicates that the solar nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation of chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. The core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation.
The origin of Saturn’s ~26.7° obliquity and ~100-million-year-old rings is unknown. The observed rapid outward migration of Saturn’s largest satellite, Titan, could have raised Saturn’s obliquity through a spin-orbit precession resonance with Neptune. We use Cassini data to refine estimates of Saturn’s moment of inertia, finding that it is just outside the range required for the resonance. We propose that Saturn previously had an additional satellite, which we name Chrysalis, that caused Saturn’s obliquity to increase through the Neptune resonance. Destabilization of Chrysalis’s orbit ~100 million years ago can then explain the proximity of the system to the resonance and the formation of the rings through a grazing encounter with Saturn.
Callisto is thought to possess a subsurface ocean, which will dissipate energy due to obliquity tides. This dissipation should have damped any primordial inclination within 1 Gyr - and yet Callisto retains a present-day inclination. We argue that Callisto’s inclination and eccentricity were both excited in the relatively recent past (∼0.3 Gyr). This excitation occurred as Callisto migrated outwards according to the “resonance-locking” model and passed through a 2:1 mean-motion resonance with Ganymede. Ganymede’s orbital elements were likewise excited by the same event. To explain the present-day orbital elements we deduce a solid-body tidal k2/Q ≈ 0.05 for Callisto and a significantly lower value for Ganymede.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.