The insulator-metal transition in single crystal La 5/8Ϫy Pr y Ca 3/8 MnO 3 with yϷ0.35 was studied using synchrotron x-ray diffraction, electric resistivity, magnetic susceptibility, and specific heat measurements. Despite the dramatic drop in the resistivity at the insulator-metal transition temperature T MI , the charge-ordering ͑CO͒ peaks exhibit no anomaly at this temperature and continue to grow below T MI . Our data suggest then, that in addition to the CO phase, another insulating phase is present below T CO . In this picture, the insulator-metal transition is due to the changes that occur within this latter phase. The CO phase does not appear to play a major role in this transition. We propose that a percolationlike insulator-metal transition occurs via the growth of ferromagnetic metallic domains within the parts of the sample that do not exhibit charge ordering. Finally, we find that the low-temperature phase-separated state is unstable against x-ray irradiation, which destroys the CO phase at low temperatures.
We have studied the magnetic relaxation properties of the phase-separated manganite compound La 0.250 Pr 0.375 Ca 0.375 MnO 3 . A series of polycrystalline samples was prepared with different sintering temperatures, resulting in a continuous variation of phase fraction between metallic (ferromagnetic) and charge-ordered phases at low temperatures. Measurements of the magnetic viscosity show a temperature and field dependence which can be correlated to the static properties. Common to all the samples, there appears to be two types of relaxation processes -at low fields associated with the reorientation of ferromagnetic domains and at higher fields associated with the transformation between ferromagnetic and non-ferromagnetic phases.
We report x-ray scattering studies of short-range structural correlations and diffuse scattering in Nd0.5Sr0.5MnO3. On cooling, this material undergoes a series of transitions, first from a paramagnetic insulating (PI) to a ferromagnetic metallic (FM) phase, and then to a charge-ordered (CO) insulating state. Highly anisotropic structural correlations were found in both the PI and FM states of this compound. The correlations increase with decreasing temperature, reaching a maximum at the CO transition temperature. Below this temperature, they abruptly collapsed. Single-polaron diffuse scattering was also observed in both the PI and FM states suggesting that substantial local lattice distortions are present in these phases. We argue that our measurements indicate that nanoscale regions exhibiting layered orbital order exist in the paramagnetic and ferromagnetic phases of Nd0.5Sr0.5MnO3.
Our results from various transport experiments on Mg1-xB2 indicate a surprising effect associated with the presence of a Mg deficiency in MgB2: the phase separation between Mg-vacancy rich and Mg-vacancy poor phases. The Mg-vacancy poor phase is superconducting, but the insulating nature of the Mg-vacancy rich phase probably originates from the Anderson (disorder-induced) localization of itinerant carriers. Furthermore, electron diffraction measurements indicate that within vacancy-rich regions these defects tend to order with intriguing patterns. This electronic phase separation in Mg1-xB2 shows similar, but also distinct characteristics compared with that observed in La(2)CuO(4+delta).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.