Abstract. We present the WD2014 chronology for the upper part (0–2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5 % of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1 % of the age at three abrupt climate change events between 27 and 31 ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas–Preboreal transition (11.595 ka; 24 years younger) and the Bølling–Allerød Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations.
Waters from an extensive sulfide-rich aquifer emerge in the Frasassi cave system, where they mix with oxygen-rich percolating water and cave air over a large surface area. The actively forming cave complex hosts a microbial community, including conspicuous white biofilms coating surfaces in cave streams, that is isolated from surface sources of C and N. Two distinct biofilm morphologies were observed in the streams over a 4-year period. Bacterial 16S rDNA libraries were constructed from samples of each biofilm type collected from Grotta Sulfurea in 2002. -, ␥-, ␦-, and -proteobacteria in sulfur-cycling clades accounted for >75% of clones in both biofilms. Sulfate-reducing and sulfur-disproportionating ␦-proteobacterial sequences in the clone libraries were abundant and diverse (34% of phylotypes). Biofilm samples of both types were later collected at the same location and at an additional sample site in Ramo Sulfureo and examined, using fluorescence in situ hybridization (FISH). The biomass of all six stream biofilms was dominated by filamentous ␥-proteobacteria with Beggiatoa-like and/or Thiothrix-like cells containing abundant sulfur inclusions. The biomass of -proteobacteria detected using FISH was consistently small, ranging from 0 to less than 15% of the total biomass. Our results suggest that S cycling within the stream biofilms is an important feature of the cave biogeochemistry. Such cycling represents positive biological feedback to sulfuric acid speleogenesis and related processes that create subsurface porosity in carbonate rocks.Sulfidic caves form in carbonate rocks where sulfide-rich waters interact with oxygen at the water table or at subterranean springs. The caves form as a result of sulfuric acid production (equation 1) from microbial or abiotic sulfur oxidation. The sulfuric acid reacts with carbonate host rock to form gypsum and carbonic acid (equation 2).(1)Some of the longest caves known are thought to have formed by this process, including Lechugilla Cave in New Mexico, with 184 km of passages (17). Actively forming sulfidic caves are uncommon but intensely valuable as natural laboratories to understand factors influencing cave formation and resulting biological, geochemical, and isotopic signatures. Active sulfidic caves can host biogeochemically isolated ecosystems based entirely on microbial lithoautotrophic primary productivity (16,38). These ecosystems are aphotic, terrestrial, subsurface environments comparable to sulfureta at hot springs and deep sea vents (10) and are of considerable interest as analogs for microbially dominated, early earth biotic communities such as those that might have developed after the initial rise of oxygen in the early Proterozoic era.Available information from culturing, fluorescence in situ hybridization (FISH), and 16S rDNA libraries suggests that ε-and ␥-proteobacteria are important biofilm-forming groups in the sulfidic cave waters studied to date. Microbial biofilms in Lower Kane Cave (Wyoming) springs and streams are dominated by filamentous ε-prot...
The last glacial period exhibited abrupt Dansgaard-Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard-Oeschger cycle and vice versa, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard-Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard-Oeschger dynamics.
Abstract. We present the WD2014 chronology for the upper part (0–2850 m, 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for Intcal13 demonstrated WD2014 was consistently accurate to better than 0.5 % of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated WD2014 had an accuracy of better than 1 % of the age at three abrupt climate change events between 27 and 31 ka. WD2014 has consistently younger ages than Greenland ice-core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11 546 ka BP, 24 years younger) and the Bølling-Allerød Warming (14 576 ka, 7 years younger) WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.