In oilseed rape (Brassica napus L.) like in most oleaginous crops, seed oil content is the main qualitative determinant that confers its economic value to the harvest. Increasing seed oil content is then still an important objective in oilseed rape breeding. In the objective to get better knowledge on the genetic determinism of seed oil content, a genetic study was undertaken in two genetic backgrounds. Two populations of 445 and a 242 doubled haploids (DH) derived from the crosses "Darmor-bzh" x "Yudal" (DY) and "Rapid" x "NSL96/25" (RNSL), respectively, were genotyped and evaluated for oil content in different trials. QTL mapping in the two populations indicate that additive effects are the main factors contributing to variation in oil content. A total of 14 and 10 genomic regions were involved in seed oil content in DY and RNSL populations, respectively, of which five and two were consistently revealed across the three trials performed for each population. Most of the QTL detected were not colocalised to QTL involved in flowering time. Few epistatic QTL involved regions that carry additive QTL in one or the other population. Only one QTL located on linkage group N3 was potentially common to the two populations. The comparisons of the QTL location in this study and in the literature showed that: (i) some of the QTL were more consistently revealed across different genetic backgrounds. The QTL on N3 was revealed in all the studies and the QTL on N1, N8 and N13 were revealed in three studies out of five, (ii) some of the QTL were specific to one genetic background with potentially some original alleles, (iii) some QTL were located in homeologous regions, and (iv) some of the regions carrying QTL for oil content in oilseed rape and in Arabidopsis could be collinear. These results show the possibility to combine favourable alleles at different QTL to increase seed oil content and to use Arabidopsis genomic data to derive markers for oilseed rape QTL and identify candidate genes, as well as the interest to combine information from different segregating populations in order to build a consolidated map of QTL involved in a specific trait.
SummaryIn wheat, the deployment of marker-assisted selection has long been hampered by the lack of markers compatible with high-throughput cost-effective genotyping
The increasing availability of expressed sequence tags (ESTs) in wheat ( Triticum aestivum) and related cereals provides a valuable resource of non-anonymous DNA molecular markers. We examined 170,746 wheat ESTs from the public (International Triticeae EST Cooperative) and Génoplante databases, previously clustered in contigs, for the presence of di- to hexanucleotide simple sequence repeats (SSRs). Analysis of 46,510 contigs identified 3,530 SSRs, which represented 7.5% of the total number of contigs. Only 74% of the sequences allowed primer pairs to be designed, 70% led to an amplification product, mainly of a high quality (68%), and 53% exhibited polymorphism for at least one cultivar among the eight tested. Even though dinucleotide SSRs were less represented than trinucleotide SSRs (15.5% versus 66.5%, respectively), the former showed a much higher polymorphism level (83% versus 46%). The effect of the number and type of repeats is also discussed. The development of new EST-SSRs markers will have important implications for the genetic analysis and exploitation of the genetic resources of wheat and related species and will provide a more direct estimate of functional diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.