We investigated the antioxidant preventive effect of betaine on isoprenaline-induced myocardial infarction in male albino rats. Isoprenaline induced myocardial infarction was manifested by a moderate elevation in the levels of diagnostic marker enzymes (alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and creatine phosphokinase) and homocysteine in plasma of experimental rats. Significant rise in the level of lipid peroxidation with a concomitant decline in the levels of myocardial non-enzymic (reduced glutathione) and enzymic antioxidants (glutathione peroxidase, glutathione-S-transferase, catalase and superoxide dismutase) was also observed. Oral pretreatment with betaine significantly prevented isoprenaline-induced alterations in the levels of diagnostic marker enzymes and homocysteine in plasma of experimental groups of rats. It counteracted the isoprenaline-induced lipid peroxidation and maintained the myocardial antioxidant defense system at near normal. Histopathological observations also confirmed the protective effect of betaine against isoprenaline-induced myocardial infarction. The results of the present investigation indicate that the protective effect of betaine is probably related to its ability to strengthen the myocardial membrane by its membrane stabilizing action or to a counteraction of free radicals by its antioxidant property.
Stress can be defined as physical and psychological modifications that disrupt the homeostasis and the balance of organisms. Stress is known as one of the most important reasons of several diseases. In the present study, the anti-stress effect of betaine was evaluated with reference to its antioxidant property. Wistar albino rats were divided into four groups such as control, betaine, restraint stress (6 h/day for 30 days), and betaine+restraint stress. The oxidative damage was assessed by measuring the protein and corticosterone in plasma, lipid peroxidation, nonenzymic (reduced glutathione), and enzymic antioxidants (glutathione peroxidase, glutathione-S-transferase, catalase, and superoxide dismutase) in the lymphoid organs of thymus and spleen. Followed by the induction of restraint stress, the non-enzymic and enzymic antioxidants were significantly decreased with concomitant increase observed in the levels of corticosterone and lipid peroxidation. Oral pretreatment with betaine (250 mg/kg body weight daily for a period of 30 days) significantly (P<0.001) prevented the restraint stress-induced alterations in the levels of protein and corticosterone in plasma of experimental groups of rats. It counteracted the restraint stress-induced lipid peroxidation and maintained the antioxidant defense system in the lymphoid tissues at near normal. The findings suggest that betaine possesses significant anti-stress activity, which may be due to its antioxidant property.
The present study was designed to examine the cardioprotective effect of betaine on mitochondrial function in isoprenaline-induced myocardial infarction in rats with respect to changes in the mitochondrial energy status and antioxidant defense system. Prior oral treatment with betaine significantly prevented the isoprenaline-induced elevation in the levels of diagnostic maker enzymes [alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and creatine phosphokinase (CPK)] and homocysteine in plasma of the experimental group of rats. Its administration significantly counteracted the isoprenaline-induced aberrations in the myocardial energy status by maintaining the levels of myocardial ATP and betaine contents and the activities of mitochondrial TCA cycle enzymes [isocitrate dehydrogenase (ICDH), α-ketoglutarate dehydrogenase (α-KDH), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH)] and respiratory marker enzymes (NADH dehydrogenase and cytochrome-c-oxidase) at near normalcy. It also exerted an antioxidant effect against isoprenalineinduced myocardial infarction by blocking the induction of mitochondrial lipid peroxidation (LPO). A tendency to minimize the isoprenaline-induced alterations in the level of reduced glutathione (GSH) and in the activities of glutathione-dependent antioxidant enzymes [glutathione peroxidase (GPx) and glutathione-S-transferase (GST)] and antiperoxidative enzymes [superoxide dismutase (SOD) and catalase (CAT)] in the heart mitochondria was also observed. The results of the present study indicate that the overall cardioprotective effect of betaine is probably related to its ability to maintain the myocardial energy status (ATP) at higher level by maintaining the activities of TCA cycle enzymes and respiratory marker enzymes at near normalcy, and/or to its free radical-scavenging ability against isoprenaline-induced lipid peroxidation, which is primarily responsible for the irreversible necrosis of the myocardial membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.