Two 2 £ 2 factorial experiments were conducted to investigate the interaction between cereal type (wheat v. barley) and exogenous enzyme supplementation (with or without) on odour and ammonia emissions (experiment 1) and growth performance (experiment 2) in grower-finisher pigs. The enzyme supplement used contained endo-1, 3 (4) -b-glucanase (EC 3.2.1.6) and endo-1, 4 -b-xylanase (E.C 3.2.1.8). The diets were formulated to contain similar levels of net energy (9.8 MJ/kg) and lysine (10.0 g/kg). The experimental treatments were as follows: (1) wheat-based diet, (2) wheat-based diet containing a b-glucanase and b-xylanase mixed enzyme supplement, (3) barley-based diet and (4) barley-based diet containing a b-glucanase and bxylanase mixed enzyme supplement. In experiment 1, the diets were offered to the pigs for 23 days in sealed pens (eight pigs per pen) and this was repeated four times (n ¼ 4). Odour and ammonia emissions were measured on days 9, 11, 14, 16, 21 and 23 of each replicate period. Odour samples were collected in 20-l Nalophan bags and analysed for odour concentration using an ECOMA Yes/No Olfactometer. Ammonia concentrations in the ventilation air were measured using Drä ger tubes. In experiment 2, 220 pigs were group fed in mixed sex pens using single-space feeders (11 pigs per feeder, six boars and five gilts) (n ¼ 5). There was a cereal £ enzyme interaction in odour emission rates, ammonia emissions and selected microbial populations in the caecum and colon (P , 0.05). The addition of an enzyme supplement to the barley-based diet increased both odour and ammonia emission, however the addition of an enzyme to the wheat-based diet decreased ammonia emission rates and had no effect on odour emission. Pigs offered the unsupplemented barley-based diet had a significantly (P , 0.05) lower population of Enterobacteriaceae spp. and a higher population of Bifidobacteria spp. compared with enzyme-supplemented barley diets. However, there was no effect of enzyme supplementation in wheat-based diets. In the performance experiment, neither cereal type nor enzyme inclusion had an effect on pig performance or carcass characteristics. In conclusion, the inclusion of an enzyme mix to barley-based diets increased odour and ammonia emissions, while the addition of an enzyme mix to wheat-based diets decreased ammonia emissions.
Intake and digestibility are key drivers of animal production from grazed forage. The objective of this study was to compare the in vivo digestibility and voluntary dry matter (DM) intake of grass-only and grass-white clover (grass-clover) forage in individually housed sheep. This study was a Latin square design, repeated on three occasions in 2017: Spring (27 March–29 April), summer (19 June–22 July) and autumn (4 September–29 September). Grass-clover and grass-only swards were harvested daily and offered ad libitum to 6 individually housed wether sheep per treatment per period. Digestibility of DM, organic matter (OM), neutral detergent fibre (NDF) and acid detergent fibre (ADF) were determined using the total faecal collection method. Dry matter intake was not significantly different between treatments. White clover inclusion increased forage crude protein concentration in autumn (p < 0.001) and reduced NDF concentration in the offered forage (p < 0.001), increasing nitrogen intake per sheep in autumn (p < 0.001) and decreasing NDF intake per sheep in autumn (p < 0.001). Grass-clover swards had a significantly greater OM and DM digestibility compared to grass-only swards (p < 0.05). This could potentially result in increased animal production from grass-clover swards compared to grass-only swards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.