A current objective of low-energy nuclear theory is to build nonempirical nuclear energy density functionals (EDFs) from underlying internucleon interactions and many-body perturbation theory (MBPT). The density matrix expansion (DME) of Negele and Vautherin is a convenient method to map highly nonlocal Hartree-Fock expressions into the form of a quasi-local Skyrme functional with density-dependent couplings. In this work, we assess the accuracy of the DME at reproducing the nonlocal exchange (Fock) contribution to the energy. In contrast to the scalar part of the density matrix for which the original formulation of Negele and Vautherin is reasonably accurate, we demonstrate the necessity to reformulate the DME for the vector part of the density matrix, which is needed for an accurate description of spin-unsaturated nuclei. Phase-space-averaging techniques are shown to yield a significant improvement for the vector part of the density matrix compared to the original formulation of Negele and Vautherin. The key to the improved accuracy is to take into account the anisotropy that characterizes the local momentum distribution in the surface region of finite Fermi systems. Optimizing separately the DME for the central, tensor, and spin-orbit contributions to the Fock energy, one reaches a few-percent accuracy over a representative set of semi-magic nuclei. With such an accuracy at hand, one can envision using the corresponding Skyrme-like energy functional as a microscopically constrained starting point around which future phenomenological parametrizations can be built and refined.
In a recent series of articles, Gebremariam, Bogner, and Duguet derived a microscopically based nuclear energy density functional by applying the density matrix expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory two-and three-nucleon interactions. Owing to the structure of the chiral interactions, each coupling in the DME functional is given as the sum of a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the finite-range pion exchanges. Because the contact contributions have essentially the same structure as those entering empirical Skyrme functionals, a microscopically guided Skyrme phenomenology has been suggested in which the contact terms in the DME functional are released for optimization to finite-density observables to capture short-range correlation energy contributions from beyond Hartree-Fock. The present article is the first attempt to assess the ability of the newly suggested DME functional, which has a much richer set of density dependencies than traditional Skyrme functionals, to generate sensible and stable results for nuclear applications. The results of the first proof-ofprinciple calculations are given, and numerous practical issues related to the implementation of the new functional in existing Skyrme codes are discussed. Using a restricted singular value decomposition optimization procedure, it is found that the new DME functional gives numerically stable results and exhibits a small but systematic reduction of our test χ 2 function compared to standard Skyrme functionals, thus justifying its suitability for future global optimizations and large-scale calculations.
The density matrix expansion (DME) of Negele and Vautherin is a convenient tool to map finiterange physics associated with vacuum two-and three-nucleon interactions into the form of a Skymelike energy density functional (EDF) with density-dependent couplings. In this work, we apply the improved formulation of the DME proposed recently in arXiv:0910.4979 by Gebremariam et al. to the non-local Fock energy obtained from chiral effective field theory (EFT) two-nucleon (NN) interactions at next-to-next-to-leading-order (N 2 LO). The structure of the chiral interactions is such that each coupling in the DME Fock functional can be decomposed into a cutoff-dependent coupling constant arising from zero-range contact interactions and a cutoff-independent coupling function of the density arising from the universal long-range pion exchanges. This motivates a new microscopically-guided Skyrme phenomenology where the density-dependent couplings associated with the underlying pion-exchange interactions are added to standard empirical Skyrme functionals, and the density-independent Skyrme parameters subsequently refit to data. A Mathematica notebook containing the novel density-dependent couplings is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.