Mechanically-induced wood welding, without any adhesive, is shown here to rapidly yield wood joints satisfying the relevent requirements for structural application. The mechanism of mechanically-induced vibrational wood fusion welding is shown to be due mostly to the melting and owing of some amorphous, cells-interconnecting polymer material in the structure of wood, mainly lignin, but also hemicelluloses. This causes partial detachment, the 'unglueing' of long wood cells, wood bres, and the formation of a bre entanglement network in the matrix of molten material which then solidi es. Thus, a wood cells/ bre entanglement network composite having a molten lignin polymer matrix is formed. During the welding period some of the detached wood bres which are no longer held by the interconnecting material are pushed out of the joint as excess bres. Crosslinking chemical reactions also have shown to occur. The most likely one of these identi ed by NMR appears to be a cross-linking reaction of lignin with carbohydrate-derived furfural. The presence of these reactions has been identi ed by CP-MAS 13 C-NMR. These reactions, however, are relatively minor contributors during the very short welding period. Their contribution increases after welding has nished, which explains why long holding times under pressure after the end of welding contribute strongly to obtaining a good bond.
Mechanically-induced wood flow welding, without any adhesive, is here shown to rapidly yield wood joints satisfying the relevant requirements for structural application. The mechanism of mechanically-induced vibrational wood flow welding is shown to be due mostly to the melting and flowing of the amorphous polymer materials interconnecting wood cells, mainly lignin, but also some hemicelluloses. This causes the partial detachment of long wood cells and wood fibres and the formation of an entanglement network in a matrix of melted material which then solidifies. Thus, it forms a wood cell/fibre entanglement network composite having a molten lignin polymer matrix. During the welding period, some of the detached wood fibres no longer held by the interconnecting material are pushed out of the joint as excess fibre. Cross-linking chemical reactions of lignin and of carbohydrate-derived furfural also occur. Their presence has been identified by CP-MAS 13 C NMR. These reactions are, however, relatively minor contributors during the very short welding period. Their contribution increases after welding has finished, explaining why relatively longer holding times under pressure after the end of welding contribute strongly to obtaining a good bond.
Mechanically induced wood fusion welding, without any adhesive, is shown here to yield rapidly bonding wood joints satisfying the relevant requirements for structural application. The mechanism of mechanically induced vibrational wood fusion welding is shown to be due mostly to the melting and flowing of amorphous cells-interconnecting polymer material in the structure of wood, mainly lignin, but also some hemicelluloses. This causes a partial detachment, the "ungluing," of long wood cells and wood fibers and the formation of an entanglement network drowned in a matrix of melted material which then solidifies, thus forming a wood cell/fiber entanglement network composite with a molten lignin polymer matrix. During the welding period some of the detached wood fibers which are no longer being held by the interconnecting material are pushed out of the joint as excess fiber. Crosslinking chemical reactions of lignin and carbohydrate-derived furfural also occur. Their presence has been identified by CP-MAS 13 C-NMR. These reactions, however, are relatively minor contributors during the very short welding period. Their contribution increases after welding has finished, which explains why relatively longer holding times under pressure after the end of welding contribute strongly to obtaining a good bond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.