Vibration at an ultrasonic frequency is superimposed on the ordinary cutting motion in ultrasonic-vibration-assisted turning (UAT). This combinatory cutting motion results in reduction of the cutting force and surface roughness, and improvement of the dimensional tolerances compared with conventional turning (CT). The advantages obtainable from UAT has made this process suitable for machining hard-to-cut and brittle materials such as super-alloys and ceramics, as well as ordinary materials. The elastic deflection of work-pieces is primarily responsible for the diametrical errors of the machined parts. This is of course more obvious for slender work-pieces. The influence of UAT process on the diametrical error has not yet been investigated. This has been partly undertaken by the authors of the present paper. It has been experimentally illustrated in this paper that ultrasonic vibration superimposed on the tool tip can result in reduction of the diametrical error and thus reduced scrap rate is ensued.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.